Applying prior correlations for ensemble-based spatial localization
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields



Document Data
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page


Applying prior correlations for ensemble-based spatial localization

Filetype[PDF-2.35 MB]


  • Journal Title:
    Nonlinear Processes in Geophysics
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Localization is an essential technique for ensemble-based data assimilations (DAs) to reduce sampling errors due to limited ensembles. Unlike traditional distance-dependent localization, the correlation cutoff method (Yoshida and Kalnay, 2018; Yoshida, 2019) tends to localize the observation impacts based on their background error correlations. This method was initially proposed as a variable localization strategy for coupled systems, but it can also can be utilized extensively as a spatial localization. This study introduced and examined the feasibility of the correlation cutoff method as an alternative spatial localization with the local ensemble transform Kalman filter (LETKF) preliminary on the Lorenz (1996) model. We compared the accuracy of the distance-dependent and correlation-dependent localizations and extensively explored the potential of the hybrid localization strategies. Our results suggest that the correlation cutoff method can deliver comparable analysis to the traditional localization more efficiently and with a faster DA spin-up. These benefits would become even more pronounced under a more complicated model, especially when the ensemble and observation sizes are reduced.
  • Keywords:
  • Source:
    Nonlinear Processes in Geophysics, 29(3), 317-327
  • DOI:
  • ISSN:
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at

Version 3.26.1