Macondo oil in northern Gulf of Mexico waters – Part 2: Dispersant-accelerated PAH dissolution in the Deepwater Horizon plume
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Macondo oil in northern Gulf of Mexico waters – Part 2: Dispersant-accelerated PAH dissolution in the Deepwater Horizon plume

Filetype[PDF-1.36 MB]



Details:

  • Journal Title:
    Marine Pollution Bulletin
  • NOAA Program & Office:
  • Description:
    During the Deepwater Horizon blowout, unprecedented volumes of dispersant were applied both on the surface and at depth. Application at depth was intended to disperse the oil into smaller microdroplets that would increase biodegradation and also reduce the volumes buoyantly rising to the surface, thereby reducing surface exposures, recovery efforts, and potential stranding. In forensically examining 5300 offshore water samples for the Natural Resource Damage Assessment (NRDA) effort, profiles of deep-plume oil droplets (from filtered water samples) were compared with those also containing dispersant indicators to reveal a previously hypothesized but undocumented, accelerated dissolution of the polycyclic aromatic hydrocarbons (PAH) in the plume samples. We interpret these data in a fate-and-transport context and conclude that dispersant applications were functionally effective at depth.
  • Source:
    Marine Pollution Bulletin, 129(1), 412-419
  • ISSN:
    0025-326X
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26