Endocrine and osmoregulatory responses to tidally-changing salinities in fishes
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Endocrine and osmoregulatory responses to tidally-changing salinities in fishes

Filetype[PDF-1.36 MB]



Details:

  • Journal Title:
    General and Comparative Endocrinology
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Salinity is one of the main physical properties that govern the distribution of fishes across aquatic habitats. In order to maintain their body fluids near osmotic set points in the face of salinity changes, euryhaline fishes rely upon tissue-level osmotically-induced responses and systemic endocrine signaling to direct adaptive ion-transport processes in the gill and other critical osmoregulatory organs. Some euryhaline teleosts inhabit tidally influenced waters such as estuaries where salinity can vary between fresh water (FW) and seawater (SW). The physiological adaptations that underlie euryhalinity in teleosts have been traditionally identified in fish held under steady-state conditions or following unidirectional transfers between FW and SW. Far fewer studies have employed salinity regimes that simulate the tidal cycles that some euryhaline fishes may experience in their native habitats. With an emphasis on prolactin (Prl) signaling and branchial ionocytes, this mini-review contrasts the physiological responses between euryhaline fish responding to tidal versus unidirectional changes in salinity. Three patterns that emerged from studying Mozambique tilapia (Oreochromis mossambicus) subjected to tidally-changing salinities include, 1) fish can compensate for continuous and marked changes in external salinity to maintain osmoregulatory parameters within narrow ranges, 2) tilapia maintain branchial ionocyte populations in a fashion similar to SW-acclimated fish, and 3) there is a shift from systemic to local modulation of Prl signaling.
  • Keywords:
  • Source:
    General and Comparative Endocrinology, 326, 114071
  • DOI:
  • ISSN:
    0016-6480
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1