A wideband acoustic method for direct assessment of bubble-mediated methane flux
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

A wideband acoustic method for direct assessment of bubble-mediated methane flux

Filetype[PDF-4.41 MB]



Details:

  • Journal Title:
    Continental Shelf Research
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The bubble-mediated transport and eventual fate of methane escaping from the seafloor is of great interest to researchers in many fields. Acoustic systems are frequently used to study gas seep sites, as they provide broad synoptic observations of processes in the water column. However, the visualization and characterization of individual gas bubbles needed for quantitative studies has routinely required the use of optical sensors which offer a limited field of view and require extended amounts of time for deployment and data collection. In this paper, we present an innovative method for studying individual bubbles and estimating gas flux using a calibrated wideband from the Bolin Centre for Climate Research database: http://bolin.su.se/data/.and split-beam echosounder. The extended bandwidth (16 – 26 kHz) affords vertical range resolution of approximately 7.5 cm, allowing for the differentiation of individual bubbles in acoustic data. Split-aperture processing provides phase-angle data used to compensate for transducer beam-pattern effects and to precisely locate bubbles in the transducer field of view. The target strength of individual bubbles is measured and compared to an analytical scattering model to estimate bubble radius, and bubbles are tracked through the water column to estimate rise velocity. The resulting range of bubble radii (0.68–8.40 mm in radius) agrees with those found in other investigations with optical measurements, and the rise velocities trends are consistent with published models. Together, the observations of bubble radius and rise velocity offer a measure of gas flux, requiring nothing more than vessel transit over a seep site, bypassing the need to deploy time-consuming and expensive optical systems.
  • Keywords:
  • Source:
    Continental Shelf Research, 173, 104-115
  • DOI:
  • ISSN:
    0278-4343
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1