Colloidal size spectra, composition and estuarine mixing behavior of DOM in river and estuarine waters of the northern Gulf of Mexico
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Colloidal size spectra, composition and estuarine mixing behavior of DOM in river and estuarine waters of the northern Gulf of Mexico

Filetype[PDF-848.49 KB]



Details:

  • Journal Title:
    Geochimica et Cosmochimica Acta
  • NOAA Program & Office:
  • Description:
    Flow field-flow fractionation (FlFFF) coupled on-line with UV absorbance and fluorescence detectors was used to examine the colloidal composition and size distribution of optically active dissolved organic matter (DOM) in the lower Mississippi River (MR), the East Pearl River (EPR), the St. Louis Bay (SLB) estuary, and coastal waters of the northern Gulf of Mexico. In addition to field studies, laboratory mixing experiments using river and seawater end-members were carried out to study the processes controlling the estuarine mixing behavior and size partitioning of colloids with different sizes and composition. The colloidal size spectra of chromophoric DOM and humic-like DOM showed one dominant peak in the 0.5–4 nm size range, representing >75% of the total FlFFF-recoverable colloids. In contrast, protein-like DOM showed a bi-modal distribution with peaks at 0.5–4 nm and 4–8 nm, as well as a major portion (from ∼41% in the EPR to ∼72% in the Mississippi Bight) partitioned to the >20 nm size fraction. Bulk DOM was lower in abundance and molecular-weight in the MR compared with the EPR, while the proportion of colloidal protein-like DOM in the >20 nm size range was slightly larger in the MR compared with the EPR. These features are consistent with differences in land use, hydrological conditions, and water residence time between the two river basins, with more autochthonous DOM in MR waters. In the SLB estuary, different DOM components demonstrated different mixing behaviors. The abundance of colloidal chromophoric DOM decreased with increasing salinity and showed evident removal during estuarine mixing even though the bulk DOM appeared to be conservative. In contrast, colloidal humic-like DOM behaved conservatively inside SLB and during laboratory mixing experiments. The ratio of colloidal protein-like to humic-like DOM generally increased with increasing salinity, consistent with increasing autochthonous protein-like DOM and removal of terrestrially-derived humic-like DOM in estuarine and coastal waters. Similar mixing behavior for the bulk DOM and colloids was observed in short-term laboratory mixing experiments, suggesting that physicochemical processes are the major controlling factor for colloidal removal in the estuary. For the first time, this study showed direct evidence of contrasting estuarine mixing behavior for different size fractions of optically active colloidal DOM.
  • Source:
    Geochimica et Cosmochimica Acta, 181, 1-17
  • ISSN:
    0016-7037
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26