An important biogeochemical link between organic and inorganic carbon cycling: Effects of organic alkalinity on carbonate chemistry in coastal waters influenced by intertidal salt marshes
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

An important biogeochemical link between organic and inorganic carbon cycling: Effects of organic alkalinity on carbonate chemistry in coastal waters influenced by intertidal salt marshes

Filetype[PDF-4.44 MB]



Details:

  • Journal Title:
    Geochimica et Cosmochimica Acta
  • NOAA Program & Office:
  • Description:
    Dissolved organic carbon (DOC) contains organic acid charge groups that contribute organic alkalinity (OrgAlk) to total alkalinity (TA). These effects are often ignored or treated as a calculation uncertainty in many aquatic CO2 studies. This study evaluated OrgAlk variability, sources, and characteristics in estuarine waters exchanged tidally with a groundwater-influenced salt marsh in the northeast USA. OrgAlk provided a biogeochemical link between organic and inorganic carbon cycling through its direct effects on pH, and thus CO2 system speciation and buffer capacity. Two main charge groups were identified including carboxylic and phenolic or amine groups. Terrestrial groundwater and in-situ production within salt marsh peat contributed OrgAlk to the tidal creek, with the former being a more significant source. Groundwater entering the marsh complex contained exceptionally high OrgAlk (> 150 µmol kg−1), and these compounds were preferentially preserved within the DOC pool during groundwater transport and mixing with coastal water. OrgAlk:DOC ratios in groundwater and marsh-influenced water varied across space and time. This highlights the insufficiency of using a fixed proportion of DOC to account for organic acid charge groups. Accounting for OrgAlk altered H+ concentrations by ∼1–41 nmol kg−1 (equivalent to a pH change of ∼0.03–0.26), pCO2 by ∼30–1600 μatm and buffer capacity by ∼0.00–0.14 mmol kg−1 at the relative OrgAlk contributions of 0.9–4.3% of TA observed in the marsh-influenced tidal water. Thus, OrgAlk may have a significant influence on coastal inorganic carbon cycling. Further theoretical calculations confirm that these concentrations of OrgAlk would have sizable impacts on both carbonate speciation and, ultimately, air-sea CO2 fluxes in different coastal environments, ranging from estuarine to shelf waters. A new conceptual model linking organic and inorganic carbon cycling for coastal waters is proposed to highlight the sources and sinks of organic acid charge groups, as well as their biogeochemical behaviors and mechanistic control on the CO2 system.
  • Source:
    Geochimica et Cosmochimica Acta, 275, 123-139
  • ISSN:
    0016-7037
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26