Impacts of spectrally resolved irradiance on photolysis frequency calculations within a forest canopy
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Impacts of spectrally resolved irradiance on photolysis frequency calculations within a forest canopy

Filetype[PDF-1.96 MB]



Details:

  • Journal Title:
    Agricultural and Forest Meteorology
  • NOAA Program & Office:
  • Description:
    Although photolysis frequencies are wavelength-dependent and the dependence varies among chemical species, previous canopy radiative transfer models did not consider more than three broad bands (ultraviolet, photosynthetically active radiation (PAR), and near-infrared). In this study, high spectral resolution and wavelength-dependent idealized leaf optical properties allow us to determine the disposition of the light spectrum within a mixed deciduous forest canopy. Four radiative transfer approaches of varying complexity are applied to obtain vertical profiles of spectral actinic flux. Broad-band radiation measurements made above and below a mixed deciduous forest provide the necessary information to verify the fidelity of each radiative transfer approach. Model comparison results indicate that the Beer–Lambert scheme gives less total actinic flux, while the other three schemes give similar actinic flux profiles. Spectral actinic flux profiles are used to calculate in-canopy photolysis for different chemical species and to assess the importance of in-canopy photochemistry in modifying biogenic volatile organic compounds transported to the overlying atmospheric boundary layer. We find that, depending on the time of day and chemical species, percent errors in photolysis frequencies incurred by using a common in-canopy approximation based on weighting by relative PAR profiles can be as high as ± 50% in lower regions of the canopy, or 10–20% in daily canopy integrated photolysis frequency. Results obtained using a one-dimensional photochemical model suggest that choice of canopy radiative transfer scheme can have substantial impacts on in-canopy chemical reactions and concentrations in the overlying atmospheric boundary layer air. Such effects caused in-canopy gas concentration differences ranging from 8% for ozone and 35% for hydroxyl radical to 77% for nitrate radical.
  • Source:
    Agricultural and Forest Meteorology, 291, 108012
  • ISSN:
    0168-1923
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26