Mapping the sensitivity of agriculture to drought and estimating the effect of irrigation in the United States, 1950–2016
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Mapping the sensitivity of agriculture to drought and estimating the effect of irrigation in the United States, 1950–2016

Filetype[PDF-577.61 KB]



Details:

  • Journal Title:
    Agricultural and Forest Meteorology
  • NOAA Program & Office:
  • Description:
    Drought is a devastating natural hazard posing great threats to agriculture. Identifying the spatial pattern of agricultural sensitivity to drought can provide scientific information for decision-makers to prepare droughts, allocate resources, and mitigate impacts. Here, we use long-term state- and county-level crop data for the 10 major crops: corn grain, soybeans, hay, spring wheat, winter wheat, cotton, corn silage, sorghum, barley, and rice in the United States from 1950 to 2016. First, we perform a correlation analysis between crop yield anomalies and two drought indices (Standardized Precipitation Evapotranspiration Index (SPEI) and Standardized Precipitation Index (SPI)) to identify the sub-seasonal pattern of agricultural sensitivity to drought stress. SPEI performs better than SPI. For most crops, the sensitivity to drought increases in the early period, peaks at the critical months, and then declines. July is the most critical month for crop growth for most crops. Among all crops, soybean and corn grain are most sensitive to drought. Second, we develop an Agriculture Drought Sensitivity Index (ADSI) to quantitatively measure the sensitivity of agriculture to drought stress based on the statistical relationship between the ten major crops and SPEI. We demonstrate that there exists a very strong spatial correspondence between higher sensitivity to drought and the lower percentage of acres irrigated, and vice versa. Also, for those regions with limited irrigation, the sensitivity is higher in arid/semi-arid regions and lower in humid regions in summer. Third, given the importance of irrigation, an analysis of covariance (ANCOVA) shows that the irrigated crop yields have much higher long-run mean yields than non-irrigated crop yields. Fourth, to investigate how irrigation affects drought sensitivity, a panel data regression model shows that the responses of crop growth to drought are non-linear for all crops. Non-irrigated crops are more sensitive to droughts than the irrigated crops, particularly in severe drought conditions. This provides quantitative incentive to use irrigation as an important adaptation and coping strategy to mitigate the drought impacts on agriculture in the US.
  • Source:
    Agricultural and Forest Meteorology, 292-293, 108124
  • ISSN:
    0168-1923
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26