Selective feeding by the giant barrel sponge enhances foraging efficiency
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Selective feeding by the giant barrel sponge enhances foraging efficiency

Filetype[PDF-2.18 MB]



Details:

  • Journal Title:
    Limnology and Oceanography
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Foraging theory predicts the evolution of feeding behaviors that increase consumer fitness. Sponges were among the earliest metazoans on earth and developed a unique filter‐feeding mechanism that does not rely on a nervous system. Once thought indiscriminate, sponges are now known to selectively consume picoplankton, but it is unclear whether this confers any benefit. Additionally, sponges consume dissolved organic carbon (DOC) and detritus, but relative preferences for these resources are unknown. We quantified suspension feeding by the giant barrel sponge Xestospongia muta on Conch Reef, Florida, to examine relationships between diet choice, food resource availability, and foraging efficiency. Sponges consistently preferred cyanobacteria over other picoplankton, which were preferred over detritus and DOC; nevertheless, the sponge diet was mostly DOC (∼70%) and detritus (∼20%). Consistent with foraging theory, less‐preferred foods were discriminated against when relatively scarce, but were increasingly accepted as they became relatively more abundant. Food uptake was limited, likely by post‐capture constraints, yet selective foraging enabled sponges to increase nutritional gains.
  • Keywords:
  • Source:
    Limnology and Oceanography, 61(4), 1271-1286
  • DOI:
  • ISSN:
    0024-3590;1939-5590;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1