Metagenomics coupled with biogeochemical rates measurements provide evidence that nitrate addition stimulates respiration in salt marsh sediments
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Metagenomics coupled with biogeochemical rates measurements provide evidence that nitrate addition stimulates respiration in salt marsh sediments

Filetype[PDF-13.54 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Limnology and Oceanography
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    High‐throughput sequencing has enabled robust shotgun metagenomic sequencing that informs our understanding of the genetic basis of important biogeochemical processes. Slower to develop, however, are the application of these tools in a controlled experimental framework that pushes the field beyond exploratory analysis toward hypothesis‐driven research. We performed flow‐through reactor experiments to examine how salt marsh sediments from varying depths respond to nitrate addition and linked biogeochemical processes to this underlying genetic foundation. Understanding the mechanistic basis of carbon and nitrogen cycling in salt marsh sediments is critical for predicting how important ecosystem services provided by marshes, including carbon storage and nutrient removal, will respond to global change. Prior to the addition of nitrate, we used metagenomics to examine the functional potential of the sediment microbial community that occurred along a depth gradient, where organic matter reactivity changes due to decomposition. Metagenomic data indicated that genes encoding enzymes involved in respiration, including denitrification, were higher in shallow sediments, and genes indicative of resource limitation were greatest at depth. After 92 d of nitrate enrichment, we measured cumulative increases in dissolved inorganic carbon production, denitrification, and dissimilatory nitrate reduction to ammonium; these rates correlated strongly with genes that encode essential enzymes in these important pathways. Our results highlight the importance of controlled experiments in linking biogeochemical rates to underlying genetic pathways. Furthermore, they indicate the importance of nitrate as an electron acceptor in fueling microbial respiration, which has consequences for carbon and nitrogen cycling and fate in coastal marine systems.
  • Keywords:
  • Source:
    Limnology and Oceanography, 65(S1)
  • DOI:
  • ISSN:
    0024-3590;1939-5590;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1