Land-Atmosphere Interactions Exacerbated the Drought and Heatwave Over Northern Europe During Summer 2018
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Land-Atmosphere Interactions Exacerbated the Drought and Heatwave Over Northern Europe During Summer 2018

Filetype[PDF-3.06 MB]



Details:

  • Journal Title:
    AGU Advances
  • Personal Author:
  • Description:
    The 2018 drought and heatwave over northern Europe were exceptional, with unprecedented forest fires in Sweden, searing heat in Germany and water restrictions in England. Monthly, daily, and hourly data from ERA5, verified with in situ soil water content and surface flux measurements, are examined to investigate the subseasonal-to-seasonal progression of the event and the diurnal evolution of tropospheric profiles over Britain to quantify the anomalous land surface contribution to heat and drought. Data suggest the region entered an unprecedented condition of becoming a “hot spot” for land-atmosphere coupling, which exacerbated the heatwave across much of northern Europe. Land-atmosphere feedbacks were prompted by unusually low soil water over wide areas, which generated moisture limitations on surface latent heat fluxes, suppressing cloud formation, increasing surface net radiation, and driving temperatures higher during several multiweek episodes of extreme heat. We find consistent evidence in field data and reanalysis of a threshold of soil water content at most locations, below which surface fluxes and daily maximum temperatures become hypersensitive to declining soil water. Similar recent heatwaves over various parts of Europe in 2003, 2010, and 2019, combined with dire climate change projections, suggest such events could be on the increase. Land-atmosphere feedbacks may play an increasingly important role in exacerbating extremes, but could also contribute to their predictability on subseasonal time scales.
  • Keywords:
  • Source:
    AGU Advances, 2, e2020AV000283
  • DOI:
  • Format:
  • Document Type:
  • Funding:
  • Place as Subject:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1