Dynamic Pressure Drag on Rising Buoyant Thermals in a Neutrally Stable Environment
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Dynamic Pressure Drag on Rising Buoyant Thermals in a Neutrally Stable Environment

Filetype[PDF-2.34 MB]



Details:

  • Journal Title:
    Journal of the Atmospheric Sciences
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    This study examines dynamic pressure drag on rising dry buoyant thermals. A theoretical expression for drag coefficient Cd as a function of several other nondimensional parameters governing thermal dynamics is derived based on combining the thermal momentum budget with the similarity theory of Scorer. Using values for these nondimensional parameters from previous studies, the theory suggests drag on thermals is small relative to that on solid spheres in laminar or turbulent flow. Two sets of numerical simulations of thermals in an unstratified, neutrally stable environment using an LES configuration of the Cloud Model 1 (CM1) are analyzed. One set has a relatively low effective Reynolds number Re and the other has an order-of-magnitude-higher Re; these produce laminar and turbulent resolved-scale flows, respectively. Consistent with the theoretical Cd, the magnitude of drag is small in all simulations. However, whereas the laminar thermals have Cd ≈ 0.01, the turbulent thermals have weakly negative drag (Cd ≈ −0.1). This difference is explained by the laminar thermals having near vertical symmetry but the turbulent thermals exhibiting considerable vertical asymmetry of their azimuthally averaged flows. In the laminar thermals, buoyancy rapidly becomes concentrated around the main centers of rotation located along the horizontal central axis, leading to expansion of thermals via baroclinic vorticity generation but doing little to break vertical symmetry of the flow. Vertical asymmetry of the azimuthally averaged flow of turbulent thermals is attributed mainly to small-scale resolved eddies that are concentrated in the upper part of the thermals.
  • Keywords:
  • Source:
    Journal of the Atmospheric Sciences, 79(11), 3045-3063
  • DOI:
  • ISSN:
    0022-4928;1520-0469;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1