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ABSTRACT: This study examines dynamic pressure drag on rising dry buoyant thermals. A theoretical expression for
drag coefficient Cd as a function of several other nondimensional parameters governing thermal dynamics is derived based
on combining the thermal momentum budget with the similarity theory of Scorer. Using values for these nondimensional
parameters from previous studies, the theory suggests drag on thermals is small relative to that on solid spheres in laminar
or turbulent flow. Two sets of numerical simulations of thermals in an unstratified, neutrally stable environment using an
LES configuration of the Cloud Model 1 (CM1) are analyzed. One set has a relatively low effective Reynolds number Re

and the other has an order-of-magnitude-higher Re; these produce laminar and turbulent resolved-scale flows, respectively.
Consistent with the theoretical Cd, the magnitude of drag is small in all simulations. However, whereas the laminar ther-
mals have Cd ≈ 0.01, the turbulent thermals have weakly negative drag (Cd ≈20.1). This difference is explained by the lam-
inar thermals having near vertical symmetry but the turbulent thermals exhibiting considerable vertical asymmetry of their
azimuthally averaged flows. In the laminar thermals, buoyancy rapidly becomes concentrated around the main centers of
rotation located along the horizontal central axis, leading to expansion of thermals via baroclinic vorticity generation but
doing little to break vertical symmetry of the flow. Vertical asymmetry of the azimuthally averaged flow of turbulent ther-
mals is attributed mainly to small-scale resolved eddies that are concentrated in the upper part of the thermals.
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1. Introduction

Thermals are a common feature of many buoyancy-driven
flows, including dry and moist convection in the atmosphere
(e.g., Turner 1973; Yano 2014). They consist of a quasi-spherical
region of rising fluid that is buoyant relative to the surrounding
fluid. Dimensional analysis can be applied to understand basic
flow features of thermals assuming that their shape is self-
similar}that is, it is geometrically similar over time (e.g., Scorer
1957). Considerable progress has been made in understanding
dry thermal dynamics in the past several decades using labora-
tory observations (Scorer 1957; Turner 1957; Woodward 1959;
Richards 1961; Sànchez et al. 1989; Johari 1992; Bond and
Johari 2005, 2010; Zhao et al. 2013) and numerical models (Lilly
1962; Ogura 1962; Lundgren et al. 1992; Li and Zhang 1996; Ma
and Li 2001; Li and Ma 2003; Lai et al. 2015; Lecoanet and
Jeevanjee 2019, hereafter LJ2019; McKim et al. 2020). Many of
these studies focused on the spreading rate of thermals as they
rise and entrain surrounding fluid (Scorer 1957; Richards 1961;
Lai et al. 2015; LJ2019). This effort has included studying the re-
lation between a thermal’s impulse and its circulation which is
closely related to its spreading rate (Turner 1957; Lai et al.
2015; McKim et al. 2020). These studies have generally con-
firmed results from dimensional analysis and similarity theory.
Key characteristics (after spinup) are that the thermal radius R
depends linearly on height z (i.e., dR/dz is a constant), the
Froude number and circulation are constant over time, and

thermal velocity w scales inversely with the square root of time
t (w ∝ t21/2) (e.g., McKim et al. 2020).

A resurgence of work on thermal dynamics in the atmo-
spheric sciences community has been motivated by recent ob-
servational and high-resolution modeling studies showing that
thermals are practically ubiquitous in moist convection (Zhao
and Austin 2005; Blyth et al. 2005; Damiani et al. 2006; Heus
et al. 2009; Sherwood et al. 2013; Romps and Charn 2015).
This work has focused on the entrainment behavior and
spreading rates of moist thermals1 within convective clouds
(Romps and Charn 2015; Hernandez-Deckers and Sherwood
2016, 2018) and understanding differences between spreading
rates of dry and moist thermals (Vybhav and Ravichandran
2022; Morrison et al. 2021, hereafter MPS2021). Another as-
pect receiving recent attention is the drag force on moist ther-
mals as they rise (Sherwood et al. 2013; Romps and Öktem 2015;
Romps and Charn 2015; Hernandez-Deckers and Sherwood
2016; Morrison and Peters 2018). Relatedly, a “drag” term is
often incorporated into the vertical momentum equation in
convection parameterization schemes (e.g., Donner 1993;
Siebesma et al. 2003; Bretherton et al. 2004). However, such
schemes generally use the vertical momentum equation for
steady state plumes, and the physical meaning of dynamic
drag in this context is not clear in contrast to an ascending
thermal or starting plume (an ascending plume with a thermal-
like head).
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associated with clouds undergoing phase changes in water.
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In past literature on thermal drag, as well as the current
paper, the drag coefficient Cd is derived using the drag law:

Fd � Cdrw
2
thA/(2V), (1)

where Fd is the drag force per unit volume of the thermal, r is
the fluid density, wth is the thermal’s ascent rate, A is its hori-
zontal cross sectional area, and V is the thermal’s volume.
This follows from the standard drag law divided by V to give
a drag force per unit volume. Based on large-eddy simulation
(LES) of deep convective clouds, Sherwood et al. (2013) pro-
posed that cloud thermals experience little drag and thus have
Cd ≈ 0}that they are “slippery.” The authors made an anal-
ogy to Hill’s (nonbuoyant) analytic spherical vortex, which
has a similar overall dynamical structure to their moist ther-
mals and formally has zero drag. In contrast, Romps and
Charn (2015) showed considerable pressure drag on cloud
thermals in their LES of convective clouds}which they termed
“sticky” thermals}with a mean drag coefficient Cd ≈ 0.6. The
“slippery” versus “sticky” thermal debate largely centered on
differences in how the drag force Fd was defined. That is, the
“drag law” given by (1) does not by itself define Cd because it
depends on how Fd is determined; Sherwood et al. (2013) de-
fined Fd as the drag from momentum entrainment, whereas
Romps and Charn (2015) defined Fd as the thermal volume-
integrated perturbation pressure gradient force (where the per-
turbation was relative to a hydrostatically balanced background
state). Hernandez-Deckers and Sherwood (2016) also calcu-
lated drag from the perturbation pressure forcing on moist
thermals in LES and found a dominant balance between pertur-
bation pressure drag and buoyancy.

Note that Romps and Charn (2015) and Hernandez-Deckers
and Sherwood (2016) calculated thermal drag using the total
perturbation pressure gradient forcing. This forcing can be fur-
ther divided into buoyant and dynamic components (pB and pD,
respectively) based on terms in the diagnostic Poisson perturba-
tion pressure equation (Markowski and Richardson 2011). The
Laplacian of pB depends on the vertical gradient of fluid buoy-
ancy B, while the Laplacian of pD depends on the flow field.
Thus, the pB forcing on a thermal depends on the magnitude
and shape of the thermal’s B field, and can be well understood
from an analogy to magnetostatics (Tarshish et al. 2018). In
short, the relative pB force opposing the thermal’s upward-
directed B force depends on aspect ratio (width to height) of
the thermal’s region of buoyancy. Other studies have used sim-
plified expressions to similarly show that the pB forcing for
moist convection depends approximately on a buoyant up-
draft’s aspect ratio (Weisman et al. 1997; Pauluis and Garner
2006; Morrison 2016; Peters 2016). Given the close connection
of pB to the B field, several studies have discussed updraft accel-
eration in terms of an effective buoyancy equal to the sum of
the B and pB forcings (Davies-Jones 2003; Jeevanjee and
Romps 2015, 2016; Peters 2016; Jeevanjee 2017).

While the pB forcing on a thermal is relatively simple to
conceptualize from the thermal’s B field, drag arising from pD
forcing is inherently more challenging to understand. The pD
field itself can be split into rotational and divergence compo-
nents (sometimes referred to as “spin” and “splat”), as well as

linear and nonlinear terms in the presence of environmental
shear. These components must sum in a way such that the
total pD field is consistent with nondivergence of the fluid (for
incompressible flow). Calculating dynamic pressure drag by
the integral of 2­pD/­z over the thermal’s volume (where
z is height)}or equivalently, pDn̂ · k̂ integrated along the
thermal’s upper and lower boundaries following Gauss’s
theorem}nonzero pD drag fundamentally must arise from a
vertical asymmetry in pD along the upper and lower bound-
aries of the thermal (where n̂ and k̂ are unit vectors normal to
the thermal’s surface and in the vertical, respectively). Given
overall similarity of the flow structure of buoyant thermals to
Hill’s vortex (Sherwood et al. 2013; Zhao et al. 2013; Romps
and Charn 2015), one might anticipate small pD drag given
that Hill’s vortex has no drag; its pD field is exactly vertically
symmetric about the vortex center. However, in contrast to
Hill’s vortex, the buoyancy within thermals might in general
be expected to drive vertical asymmetry of the flow and hence
dynamic pressure drag. The key question is the magnitude and
nature of this drag. Is it a significant component of the ther-
mal’s momentum budget, generally, or small relative to the
other terms (B forcing, pB forcing, momentum entrainment)?

Perhaps surprising in light of its relative simplicity, drag on
rising dry thermals has received less attention than drag on
moist thermals. Drag on nonbuoyant vortex rings was studied
by Maxworthy (1974) and Gan et al. (2012), and drag on
buoyant vortex ring bubbles was studied recently in Vasel-
Be-Hagh et al. (2015). However, we are not aware of any
study of the drag on buoyant thermals in which the underlying
vortex ring is composed of the same fluid as the ambient, as is
the case in atmospheric convection.

There may be some correspondence of drag on dry ther-
mals to form drag on solid bodies in flow, since the latter also
occurs via pD gradient forcing in the direction of the mean
flow. A well-known feature of drag around solid bodies in a
viscous fluid is a Reynolds number dependence and, in partic-
ular, changes in Cd with a transition from laminar to turbulent
flow. For instance, it is well-known that there is often a sharp
decrease in Cd associated with the development of turbulence
(referred to as “drag crisis”). This occurs because turbulent
eddies impact vortex shedding and pressure recovery in the
object’s wake, thereby influencing drag. However, a critical
distinction with drag on solid bodies is that thermals represent
a region within a continuous fluid, and generally have an in-
ternal circulation and changes in size as they evolve and
entrain the surrounding fluid. Thus, it is unclear how knowl-
edge of form drag on solid bodies might translate to drag on
thermals, whether in laminar or turbulent flow.

The purpose of this study is to examine in detail the
dynamic pressure drag on rising buoyant thermals. Given the
limited knowledge on thermal drag generally, we focus here
on the simple case of dry buoyant thermals in an unstratified
incompressible fluid. The more complicated problem of drag
on moist thermals in a stratified environment is left to future
work. Note that other types of drag, including wave drag or
other drag-like forces (e.g., Kutta–Joukowski lift caused by
rotating bodies in flow, commonly known as the “Magnus
effect”), may impact both thermals and solid bodies in flow.
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In this study we do not investigate these other forces and in-
stead focus specifically on dynamic pressure drag on thermals
in a neutrally stable background fluid with no shear (hence no
wave drag or drag-like forces associated with shear). We first
derive a theoretical expression for Cd based on the thermal’s
vertical momentum budget combined with the similarity the-
ory of Scorer (1957). We then obtain Cd directly from numeri-
cal simulations of rising thermals using a fully dynamical
model that solves the incompressible Boussinesq equations of
motion. Two sets of simulations are analyzed: one with a rela-
tively low effective Reynolds number that produces laminar
thermals with smooth resolved-scale flow, and the other with
a higher effective Reynolds number leading to thermals with
turbulent-like flow. It is found that dynamic pressure drag is
relatively small (say, compared to flow around a solid sphere),
but interestingly the turbulent thermals have a weakly nega-
tive drag in contrast to nearly zero drag for the laminar
thermals.

The rest of the paper is organized as follows. Section 2 gives
an overview of the thermal momentum budget, the solution
for thermal dynamics from similarity theory, and the theoreti-
cal analysis of Cd. The numerical model description is in
section 3. Section 4 presents model results. A summary and
conclusions are given in section 5.

2. Theory

a. Thermal momentum budget

To understand and quantify dynamic pressure drag on ther-
mals, we first present an equation for the thermal vertical
momentum budget. Defining a thermal as occupying some
portion of space V within the domain, we integrate the verti-
cal momentum equation over V to obtain the momentum
budget. Similar to previous methods for thermal identification
and tracking (e.g., Romps and Charn 2015; LJ2019), we define
V as the region of space bounded by a closed streamline in
the azimuthally averaged (around the thermal’s central verti-
cal axis) flow that intersects with the thermal top. Defined in
this way, the vertical velocity w averaged over V is nearly
equal to the rate at which the thermal top ascends (see section 3c
for details on the thermal tracking method applied to the
numerical simulations here). Using Gauss’s theorem to re-
late the divergence of the momentum field over V to the
flux of momentum across the surface of V, similar to Romps
and Charn (2015), gives

d
dt

�
V(t)

rwd3x � 2

�
V(t)

­pB
­z

d3x 2

�
V(t)

­pD
­z

d3x

1

�
V(t)

rBd3x 1

�
­V(t)

(n̂ · ue)rwd2x, (2)

where ­V(t) is the two-dimensional boundary of V(t), and ue
is an effective entrainment velocity defined as the displace-
ment rate of the thermal boundary ub relative to flow velocity
u, i.e., ue = ub 2 u. We have divided the pressure forcing into
buoyant (pB) and dynamic ( pD) pressure components.

Dividing by thermal volume V and rearranging terms, the
thermal-averaged vertical momentum budget becomes

r
dwth

dt
�2FpB 2 FpD 1 rBth 1 E, (3)

where wth ≡ V21
�
V(t)wd

3x is the thermal-averaged w assumed to
be equal to the thermal ascent rate, FpD ≡ V21

�
V(t)(­pD/­z)d3x

is the thermal-averaged dynamic pressure drag force, FpB ≡
V21

�
V(t)(­pB/­z)d3x is the thermal-averaged buoyancy pressure

force, E ≡ V21
�
­V(t)(n̂ · ue)rwd2x2 V21(dV/dt)wthr is the mo-

mentum entrainment, and Bth ≡ V21
�
V(t)Bd

3x is the thermal-
averaged buoyancy (hereafter in most instances we drop sub-
script “th” for the thermal-averaged B and w). For simplicity we
have assumedBoussinesq incompressibleflow so that r is constant.
Our study focuses on dynamic pressure drag}the second term on
the rhs of (3)}which closely accords with other notions of fluid
dynamical drag. Thus, we obtainCd using (1) withFd=FpD.

Note that E represents the import or export of vertical mo-
mentum to/from the thermal owing to a difference between
the local flow speed normal to the thermal surface and the
surface displacement rate. Physically, nonzero E can occur by
changes in the thermal volume (e.g., expansion) or local in-
flow and outflow across the thermal surface, or a combination
of the two. As shown by LJ2019 and McKim et al. (2020),
thermal expansion driven by baroclinic vorticity generation
associated with the thermal’s buoyancy structure is the main
process leading to E , 0; smaller scale mixing is relatively un-
important even in turbulent thermals (LJ2019). For simplicity
and consistent with these previous studies we will refer to
this baroclinically driven expansion as “entrainment,” even
though the mechanism is rather different from turbulent mixing
along the edge of a boundary layer or plume that is typically
thought of as entrainment. This is similar to the distinction be-
tween “dynamic entrainment” associated with organized inflow
and “turbulent entrainment” from smaller-scale mixing that has
been discussed in previous papers on cumulus dynamics and con-
vection parameterizations (e.g., de Rooy et al. 2013).

b. Review of analytic theory for thermals

Following dimensional analysis and assuming thermals are
self-similar, a set of relationships can be derived to describe
thermal behavior2 (e.g., Scorer 1957; Turner 1964). This simi-
larity solution is expressed as

B � B0

R0

R

( )3
, (4)

dR/dz � a, (5)

w2 � FrBR, (6)

2 The self-similar solution is valid when there are no additional
length scales, i.e., for flow that is incompressible, neutrally strati-
fied, and in an infinite domain with no buoyancy sources or sinks.
Thus, it is expected to break down near boundaries or other dis-
continuities, when the thermal size approaches a scale height, or
when there are additional buoyancy changes, for example, due to
phase changes.
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where R is the thermal radius, subscript 0 indicates initial
values, a is the rate of thermal radius growth with height,
and Fr is a Froude number. Note that (6) may be interpreted
as a simplified form of the momentum budget given by (3)
integrated in time following the thermal. The dimensionless
constants a and Fr must be determined empirically, though
they can be constrained by invoking the vertical momen-
tum budget (Escudier and Maxworthy 1973) or thermal’s
impulse–circulation relationship (Turner 1957, 1964; McKim
et al. 2020). Following LJ2019 we define a fractional en-
trainment rate � = d(lnV)/dz. Combined with (5), this gives
� = 3a/R. An entrainment efficiency e can be defined as
e ≡ �R = 3a; since a is a constant it follows that e is also a
constant.

Integrating (5), combining the resulting expression with (4)
and (6), and integrating over time yields (similar to LJ2019)

z � at1/2 1 z0, (7)

where a is a function of a, Fr, and thermal shape [see Scorer
(1957) for details] and z0 is a virtual origin height. Equation (7)
is used for our thermal tracking procedure described later.

c. Theoretical estimate of drag coefficient from similarity
solution and momentum budget

We combine the thermal vertical momentum equation
from section 2a with the similarity solution from section 2b to
derive an approximate expression for Cd. First, we express the
dynamic and buoyant pressure terms in the momentum bud-
get using the drag law with Cd and a virtual mass coefficient
Cy, respectively:

FpD � rCd

A
2V

w2, (8)

FpB � r(1 2 Cy)B, (9)

where A is the thermal’s horizontal cross-sectional area.
The coefficient Cy is defined such that the effective buoyancy}
the sum of B and 2FpB/r}is equal to CyB. For example,
Cy = 2/3 for a spherical buoyancy perturbation (Tarshish
et al. 2018).

Combining (8) and (9) with the momentum budget Eq. (3),
multiplying by V/r, and rearranging terms gives

d(Vw)
dt

� CyBV 2
Cd

2
Aw2, (10)

where we have approximated E ≈ 2rwV21dV/dt in (3) by ne-
glecting the role of entrainment and detrainment driven by
small-scale mixing and assuming that entrainment by thermal
expansion incorporates environmental fluid with w = 0. Using
d/dt = wd/dz and dividing (10) by Vw2 gives

d ln(Vw)
dz

� CyB
w2 2

Cd

2
A
V
: (11)

Following (5) we have d/dz = ad/dR, and define a “shape
parameter” g ≡ RA/V, where g is a constant following self-

similarity (e.g., g = 3/4 for a sphere). Combined with (6),
this yields

a
d ln(Vw)

dR
� Cy

F2
r R

2
g

2
Cd

R
: (12)

Finally, we combine (4) and (6) to give Vw = bR2, where b is
a constant. Substituted into (12), this yields after rearranging
terms:

Cd � 2
g

Cy

F2
r
2 2a

( )
: (13)

We emphasize that this derivation does not provide a self-
contained solution for Cd since it relies on empirical specifica-
tion of parameters a, g, Fr, and Cy, but does constrain Cd pro-
vided these parameters are known and the similarity solution
is valid. Scorer (1957) found a = 1/4 and F2

r � 6/5. Together
with Cy = 0.57 from Tarshish et al. (2018) and g = 3/4 for
spheres, (13) gives Cd ≈ 0.15. Using parameters from the tur-
bulent thermal simulations of LJ2019 with F2

r ≈ 2:5 and
a ≈ 0.15 gives Cd ≈ 20.09. Overall, these results suggest a
small magnitude of drag and Cd for thermals, at least
beyond spinup time when the similarity solution is expected
to provide a reasonable approximation of thermal behavior.3

Numerical simulations described in section 4 calculate Cd

directly from the dynamic perturbation pressure field and thermal
properties. We evaluate the theoretical expression (13) using
values of a, g, Cy, and Fr from the simulations and compare with
the directly calculated Cd.

3. Numerical simulations: Model description and setup

a. Model description

This study uses the Cloud Model 1 (CM1; Bryan and
Fritsch 2002) to numerically simulate rising dry thermals in a
LES configuration based on the filtered Navier–Stokes equa-
tions. CM1 is a nonhydrostatic fluid model used primarily
for atmospheric flows (both dry and moist). We utilize the
incompressible Boussinesq dynamics solver option. Prognos-
tic model variables are the 3D components of flow velocity
(u, y, w) and potential temperature perturbation u′, with pres-
sure retrieved diagnostically. Buoyancy B is obtained by gu′/u0,
where g is a gravitational acceleration constant and u0 is a
constant background u of the fluid environment. In this
framework prognosing u′ is equivalent to prognosing B itself.
Simulations are nondimensionalized based on a length scale
equal to the initial thermal radius R0 (radius of the initial
buoyancy perturbation), time scale given by

��������
R0/B0

√
, where

B0 is the thermal’s initial buoyancy, and density scale r0 equal
to the background fluid density in the Boussinesq framework

3 Note that our simulations suggest g ∼ 1.25 and ∼1 for laminar
and turbulent thermals, respectively, as shown in section 4. Using
these values leads to a 25%–40% decrease in magnitude of Cd, but
does not affect the overall picture of weakly negative to nearly
zero Cd.
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(all other quantities are nondimensionalized following these
basic scales).

We employ two main configurations of CM1. In the first,
we use relatively low spatial resolution with horizontal and
vertical grid spacings equal to 1/10 of R0 (LOWRES). Be-
cause the thermals grow rather quickly as they ascend, the
overall dynamical structure (e.g., the toroidal circulation) is
well resolved with roughly 20–40 grid points horizontally and
vertically across the thermal. However, because the dissipa-
tion scale (the model’s filter scale) is a relatively large fraction
of the thermals’ radii, the resolved-scale flow is smooth and
thus appears laminar. In the second set of runs we use higher
spatial resolution relative to the thermal size, with the horizon-
tal and vertical grid spacings equal to 1/50 of R0 (HIGHRES).
In this set of runs the dissipation scale is small relative to the
thermal size, and the flow near and within the thermals rapidly
(within t ∼ 3) develops small-scale, turbulent-like eddies, par-
ticularly along the upper thermal edge.

In contrast to HIGHRES, turbulent eddies are mostly un-
resolved in LOWRES and their impact therefore should be
mostly represented by the subgrid-scale (SGS) mixing scheme
(scheme details given below). However, the impact of SGS
mixing in LOWRES differs from the impact of mixing by re-
solved turbulent eddies (plus SGS mixing) in HIGHRES.
This leads to noticeable differences in the thermals’ organized
flow between LOWRES and HIGHRES (e.g., the azimuth-
ally averaged flow around the thermals’ central vertical axes)
that are detailed in sections 4 and 5. Despite our use of LES
with a traditional SGS scheme, the resolved-scale flow in
LOWRES is remarkably similar to the direct numerical simu-
lation (DNS) of laminar thermals from LJ2019. Moreover, the
turbulent thermals in HIGHRES are very similar to the tur-
bulent thermals in the DNS of LJ2019.

Here we use LES with the filtered Navier–Stokes equations
instead of DNS to retain a close connection to atmospheric
modeling, particularly future work exploring drag on moist
thermals in clouds in which DNS is not possible given the
huge O(109) Reynolds number. Bryan et al. (2003) showed
that an “effective” Reynolds number Re in LES scales with
(L/Dx)4/3, where L is the length scale of the flow feature and
Dx is the model’s grid spacing (see section 3 therein). It fol-
lows that there is about an order-of-magnitude difference in
Re between the LOWRES and HIGHRES simulations. This
is close to the factor of 10 difference in actual Reynolds

number (using fixed viscosities) between the laminar and tur-
bulent DNS of LJ2019. Given this and the similarities in flow
compared to LJ2019 mentioned above, we treat the LOWRES
and HIGHRES thermals as analogs of laminar and turbulent
thermals. It follows that we will refer to the thermals in LOWRES
andHIGHRES as “laminar” and “turbulent,” respectively.

Advection of prognostic variables is calculated using a fifth-
order weighted essentially nonoscillatory scheme (WENO;
Jiang and Shu 1996). SGS mixing follows a Smagorinsky-type
approach as implemented by Stevens et al. (1999, see their ap-
pendix B, section b). The mixing length is set to the model
grid length. Minimum allowed values of SGS diffusion coeffi-
cients for mixing of scalars and momentum are set by apply-
ing a minimum nondimensional deformation of 5.5 3 109 for
LOWRES and 1.95 3 108 for HIGHRES. There is also a
stability-dependent correction that depends on the Richardson
number [see Eq. (B13) in Stevens et al. 1999].4 Simulations are
integrated for nondimensional time of 65.1 for LOWRES. For
HIGHRES, we integrate for a time of 18.4 but only analyze
simulations before thermal top reaches a nondimensional
distance of 2.5 (2.5 3 R0) from the model top. This occurs
between t = 16 and 17 for the HIGHRES simulations. Other
details of the setup are given in Table 1.

Thermals are inserted into the initial conditions by apply-
ing B = 1 within a sphere of radius R = 1 (nondimensional
units), with zero buoyancy elsewhere. Thermals are initially
centered horizontally within the domain at a height of
8 above the lower boundary for LOWRES and 1.6 for
HIGHRES. Additional simulations (not shown) indicate
changing the initial height of the thermals or domain size
has limited impact on results and does not affect our con-
clusions. In all simulations, small, gridscale random per-
turbations are added to the initial buoyancy within the
thermal with values between 60.1. To improve robustness,
particularly given noise in Cd, we generate ensembles for
both LOWRES and HIGHRES by applying different
random number seeds for these perturbations. The LOWRES
and HIGHRES ensembles consist of eight and five members,
respectively.

TABLE 1. Details of the two CM1 configurations used in this study. All quantities are nondimensional; see text for details.

LOWRES HIGHRES

Dynamics Incompressible Boussinesq Incompressible Boussinesq
Grid length 0.1 0.02
No. of horizontal grid points 320 3 320 560 3 560
No. of vertical grid points 640 800
Time step 0.0362 0.007 67
Total integration time 65.1 18.4
Advection Fifth-order WENO Fifth-order WENO
Subgrid-scale mixing Smagorinsky type Smagorinsky type
Lateral boundary conditions Periodic Periodic
Lower and upper boundary conditions Free slip and rigid Free slip and rigid

4 Although the background environment is neutrally stable in
our setup, local vertical gradients in B can lead to a non-zero
Richardson number locally and hence the stability correction may
be applied.
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For the thermal tracking and all subsequent analysis we use
model output in (nondimensional) time increments of 0.55 for
LOWRES and 0.15 for HIGHRES. The buoyant and dy-
namic perturbation pressure fields are diagnosed by solving
the corresponding elliptic pressure equations identically to
the incompressible solver within CM1. For calculating the
thermal’s w budget from the simulations,5 the tendency term
dw/dt is calculated directly from model output using centered
finite differencing in time. The buoyant and dynamic pressure
forcing terms are calculated directly from the diagnostic pB
and pD fields using centered differencing in space. Thermal-
mean B is obtained directly from model output. The entrain-
ment term E is calculated as a residual, meaning that the sum
of the terms on the rhs of (3) is precisely equal to dw/dt.

b. Thermal analysis methodology

Thermal boundaries must first be identified and tracked in
order to analyze thermal behavior including drag. To do so we
use a method similar to LJ2019, but extended here using an iter-
ative procedure. For each time slice, the horizontal thermal
midpoint is determined by the column with maximum vertically
integrated pressure perturbation. This is slightly different from
LJ2019, who defined the thermal midpoint using w (see their
appendix B). At the first step in the iterative process, thermal
top is defined by the buoyancy field analogously to LJ2019: the
provisional thermal top height ztop is calculated as the highest
level where the horizontally averaged B$ 1/10 of the maximum
horizontally averaged B (maximum defined in the vertical).
This is done at each time slice to generate a time series of provi-
sional ztop. Model output is then azimuthally averaged around
the horizontal midpoint using a radial–vertical grid (r, z) with
the same grid spacing as the original Cartesian grid.

As discussed in LJ2019, the thermal volume is rather sensi-
tive to thermal top velocity wtop ≡ dztop/dt. Using the ztop ob-
tained directly from the B field as described above can result
in considerable noise in wtop. Following LJ2019, we instead
calculate this derivative by fitting the analytic scaling relation
given by (7); that is, the best fit a and z0 are determined. For
determining these parameters, output for t , 5 and ,10 are
excluded as spinup in HIGHRES and LOWRES, respec-
tively. This difference accounts for somewhat slower spinup
of the LOWRES thermals, although applying the fitting
for t . 5 in the LOWRES has little impact on results includ-
ing drag. We then take the derivative of (7) analytically to
obtain a provisional wtop using the fit parameters. From
this provisional wtop we calculate the Stokes streamfunc-
tion using the thermal-relative flow field. This is done by
integrating

­c

­r
� 2pr(waxi 2 wtop), (14)

­c

­z
�22pruaxi, (15)

where uaxi and waxi are the regridded radial and vertical veloc-
ities in cylindrical coordinates, with the boundary condition
c(r = 0, z = ztop) = 0. The boundary of the thermal is the
c = 0 contour. In subsequent iteration steps, we use the c field
from the previous step to calculate a new ztop time series
based on the maximum height of the c = 0 contour. The new
ztop is then used to recalculate wtop using the fitting procedure
described above. This process is repeated until convergence.
Results do not depend on the method for defining provisional
ztop at the first step; tests show convergence to the same ther-
mal boundaries even when this provisional ztop is altered.
Thermal total and volume-averaged properties are then calcu-
lated using the “final” thermal boundaries obtained from this
iterative procedure. R is defined at the level having the widest
region with c $ 0. Entrainment efficiency e is calculated as
the product of the fractional entrainment rate « and R, with
« calculated from d(lnV)/dztop (where V is defined by the
volume with c $ 0) using centered finite differencing.

Results of the thermal tracking procedure are shown in
Fig. 1 for single realizations of the LOWRES and HIGHRES
configurations. The thermal wtop and ztop defined by the buoy-
ancy using the approach of LJ2019 during the first iteration
step are shown by red lines in Fig. 1. These ztop values are
seen to approximately follow the analytic scaling ztop ∝ t1/2

used in subsequent steps in the iterative thermal tracking pro-
cedure. As a basic check, it is seen that wtop using the iterative
procedure and the thermal volume-averaged w are almost in-
distinguishable after t = 10 (cf. the black and green lines in
Figs. 1a,c). The validity of our thermal tracking approach is
also supported by closeness of the time series for wtop with
the wtop obtained by directly fitting to wtop = awt

21/2 (i.e., us-
ing best fit aw); compare the blue and green lines in Fig. 1a.
Similarly, the ztop obtained from the analytic scaling is very
close to ztop calculated directly from the streamfunction
(Figs. 1b,d).

4. Numerical simulations: Results

a. LOWRES simulations

Figure 2 shows vertical cross sections of thermal boundaries
and fields of w, B, pB, pD, vorticity in the y–z plane hy, and
contours of streamfunction c at three different times from
one member of the LOWRES ensemble. The general flow
consists of a central region of both thermal-relative and abso-
lute (relative to the fixed model bottom/top boundaries) as-
cent with descent on the periphery. This flow structure is
similar to Hill’s analytic spherical vortex, particularly earlier
in the simulation. Later in the simulation the thermal flattens
owing to thermal expansion and lateral growth from baro-
clinic vorticity generation (McKim et al. 2020; MPS2021),
thereby losing its initially spherical shape and becoming sphe-
roidal. This process leads to an increase in thermal volume as
it rises. Environmental fluid entrained by this thermal expan-
sion is quickly wrapped around the toroidal circulation and
into the central core. This leads to a rapid reduction of B near
the thermal center (Fig. 2a). Buoyancy then becomes concen-
trated in a ring near the maximum |hy|. The pB field features

5 Here we calculate a w budget instead of a momentum (rw)
budget for convenience; these are analogous given r is constant in
our incompressible Boussinesq framework.
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positive values in the upper part of the thermal and negative
values in the lower part (Fig. 2b). This leads to a downward-
directed net pB gradient force that partially opposes the ther-
mal’s upward buoyant force. The pD field has a characteristic
high–low–high pattern from thermal top to bottom, with pD
minima associated with the rotational flow coinciding with the
|hy| maxima (Figs. 2b,c); see appendix B of Jeevanjee and
Romps (2015) for discussion of similar pD field features.

Behavior of the simulated thermals is also illustrated by
time series of thermal radius R, thermal volume-mean w, en-
trainment efficiency e, and thermal top height ztop (Fig. 3).
Results are shown for all eight members of the LOWRES

ensemble after t = 10 (i.e., excluding spinup). There is ensem-
ble spread in all of the quantities shown in Fig. 3 which re-
flects perturbations to the initial buoyancy field within the
thermals. However, behavior is similar among the ensemble
members, and consistent with the analytic similarity solution
(see section 2b). Thermal R for all simulations closely follows
the theoretical scaling R ∝ z which gives R ∝ t1/2. This is con-
sistent with nearly constant e (and a), though it decreases
slightly from t = 10 to ∼30 and is rather noisy for individual
simulations. This noise is mainly due simply to noise inherent
in calculating derivatives using finite differencing. Taking an
average of all ensemble members from t = 10 to the end of the

FIG. 1. Time series of (a),(c) thermal vertical velocity w and (b),(d) thermal top height ztop.
Results are shown for single realizations of the (top) LOWRES and (bottom) HIGHRES. The
vertical velocity at thermal top (wtop) and ztop defined by the buoyancy field on the first iterative
step (“first step”) are shown by red lines, the converged wtop and ztop using the best-fit analytic
scaling ztop = at1/2 1 z0 and iterative method (“conv. scaling”) are shown by green lines, the con-
verged thermal volume-averaged w and ztop based on the c = 0 streamline (“conv. actual”) are
shown by black lines, and wtop directly fit to wtop = awt

21/2 (“conv. w scaling”) are shown by the
blue lines in (a) and (c). Note that the black lines for thermal volume averaged w are very close
to the green lines for t. 5 and are therefore not visible in (a) and (c). The horizontal black lines
indicate the time beyond which the iterative analytic scaling method is used to track thermal
boundaries.
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FIG. 2. Vertical cross sections through the domain center from one realization of the LOWRES ensemble at t = (top) 4.4, (middle) 16.3,
and (bottom) 54.2. (left) Nondimensional buoyancy B (color contours) and vertical velocity w (thin black solid lines for positive w and
thin black dashed lines for negative w, contour values are60.1, 0.2, 0.6, and every 0.4 thereafter). (center) Nondimensional dynamic pres-
sure pD (color contours) and buoyant pressure pB (thin black solid lines for positive pB and thin black dashed lines for negative pB, con-
tour values are60.01, 0.02, 0.06, and every 0.04 thereafter). (right) Nondimensional horizontal (in y–z plane) vorticity hy (color contours)
and streamlines c (thin black contour lines). The thermal boundary corresponding to c = 0 is shown by the thick black lines in all three
panels. Only part of the model domain is shown.
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integrations gives e = 0.31, consistent with the laminar ther-
mals from LJ2019, though slightly smaller (by 14%) than their
average e. Here the time- and ensemble-average a = 0.11,
consistent with our average e since a ≈ e/3 as explained in
section 2b.

Time series of terms in the thermal momentum budget for
one realization of the LOWRES ensemble are shown in
Fig. 4. While there are small quantitative differences, other
ensemble members produce similar results. After spinup, the
budget is mainly a balance between upward B forcing and the
sink from entrainment and pB forcing. The pD forcing is small,
consistent with the small dynamic pressure drag discussed
later. The sink terms are larger than the source term leading
to a decrease of thermal w over time that closely follows the
analytic w ∝ t21/2 scaling.

The thermals’ buoyant forcing follows a general B ∝ t23/2

scaling consistent with the similarity solution in section 2b.
The pB forcing term is initially 1/3 the magnitude of the ther-
mals’ buoyant forcing consistent with theory for a spherically
shaped positive buoyancy anomaly (Tarshish et al. 2018). Its

magnitude decreases after spinup to a value of ∼0.5 that of
the buoyant forcing. This occurs because the initial B field is
rapidly distorted by thermal expansion, driving entrainment
of nonbuoyant environmental fluid (mainly from underneath
the thermal; see also Scorer 1957) followed by the internal
transport of this fluid around the thermal’s toroidal circula-
tion. This leads to the “flattened ring” of buoyancy as seen in
Figs. 2b and 2c (appearing as two lobes of positive buoyancy
on the right and left sides of the thermal in vertical cross sec-
tions). The pB forcing scales with the aspect ratio (width to
height) of the buoyancy anomaly (e.g., Tarshish et al. 2018),
explaining why its magnitude increases relative to the B forc-
ing as the thermal’s B field becomes flattened. Consistent with
this picture, the virtual mass coefficient Cy decreases from 2/3
(the theoretical value for a buoyant sphere) initially to ∼0.5
after spinup (Fig. 5a). After t = 10, the time- and ensemble-
averaged value of this ratio is 0.52. These results are consis-
tent with the theoretical arguments and numerical simulations
of Tarshish et al. (2018), who showed a similar decrease of Cy

from 2/3 for an initially spherical thermal to ∼0.57 for the

FIG. 3. Time series of (a) thermal radius R, (b) volume-average thermal w, (c) entrainment ef-
ficiency e, and (d) thermal-top height ztop based on the c = 0 streamline for the eight members
of the LOWRES ensemble. Black lines show individual ensemble members and red lines show
the ensemble mean.
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mature thermal that was spheroidal. Nearly constant Cy for
t . 10 here is consistent with a self-similar shape of the ther-
mals and buoyancy fields underpinning the similarity solution
outlined in section 2b. Self-similarity of the thermals after
spinup is further indicated by time series of shape parameter
g ≡ AR/V (Fig. 5b). It is initially close to 3/4, consistent with a
spherical thermal geometry, then increases to a nearly constant
value of 1.25 corresponding to the spheroidal thermal shape.

Figure 5c shows time series of Froude number Fr calculated
directly from the simulations as wth/

�������
BthR

√
. After about t . 5,

Fr is close to constant in time. The time- (t $ 10) and ensem-
ble-average Fr is 1.51. There is spread among the ensemble
members that tends to increase over time.

Overall, the drag coefficient Cd is very small (≈0.01) rela-
tive to that for a solid sphere or ellipsoid in flow, consistent
with the theoretical arguments in section 2c. Figure 5d shows
time series of Cd calculated directly as Cd � 2FpDV/(rAw2

th),
where the thermal area A = pR2 in our axisymmetric analysis
framework (see section 3b). For t , 10, Cd is noisy with the
mean generally between 0.05 and 0.15. Ensemble-mean Cd de-
creases thereafter to values ∼0–0.02. Cd values for individual sim-
ulations after t = 10 generally range between 20.05 and 0.05,
indicating the ensemble spread. Applying ensemble and time-
averaged values (for t $ 10) of a, g, Cy, and Fr in the theoretical
estimate from (13) gives Cd ≈ 0.02, close to 0 and consistent with
the directly calculated Cd from the simulations of ∼0–0.02.
b. HIGHRES simulations

With the effective Reynolds number of the modeled flow
greater by about an order of magnitude compared to the

LOWRES simulations (see section 3a), thermals in the
HIGHRES simulations rapidly develop small-scale fluctua-
tions of velocity and B resembling turbulent flow. Vertical
cross sections of B, w, pD, pB, hy, c, and thermal boundaries
are shown in Fig. 6 in the same format as Fig. 2 for the lami-
nar thermals. Three different times are shown: t = 3.1, 10.8,
and 15.4.

The small-scale fluctuations initially appear near the upper
edge of the ascending thermal (Fig. 6a) but later spread
through the thermal volume and below in its wake (Figs.
6b,c). However, after spinup the small-scale eddies remain
concentrated more in the upper part of the thermals as seen
in hy field, and thus turbulence is vertically asymmetric about
the thermal’s horizontal central axis. This asymmetry, also
seen in the DNS of turbulent thermals in LJ2019, likely occurs
because it takes finite time for nonturbulent environmental
fluid entrained by thermal expansion, particularly from lateral
thermal growth, to develop small-scale eddies as this environ-
mental fluid is wrapped around the toroidal circulation into
the central region and then upward by thermal relative w . 0
in the core. Crucially, this environmental fluid is entrained
primarily from below the thermal, as noted by previous au-
thors (Scorer 1957; Li and Ma 2003). This behavior is similar
to the engulfment and wrapping of nonbuoyant environmen-
tal fluid around the central core and upward discussed earlier.

The turbulent thermals are also consistent with the similar-
ity theory outlined in section 2b, including time series of R,
thermal-average w, and ztop (Fig. 7). Overall behavior is simi-
lar to the LOWRES thermals. The main difference is that the
magnitude of a ≡ dR/dz is greater for the turbulent thermals.
This difference is qualitatively consistent with LJ2019, al-
though the difference here in a (about 40%) is larger than
that in LJ2019 (about 20%). Note there is much more noise in
e for the HIGHRES turbulent thermals than LOWRES ther-
mals, which is not surprising. Otherwise the overall momen-
tum budget and balance of terms in HIGHRES is similar to
LOWRES (not shown). The only exception is that the dy-
namic pressure forcing term is small and positive (upward di-
rected) for HIGHRES rather than nearly zero to slightly
negative for LOWRES, which is consistent with the differ-
ences in drag discussed below.

Time series of Cy, g, Fr, and Cd, are shown in Fig. 8. The be-
havior of these parameters is also generally similar to the lam-
inar thermals from the LOWRES ensemble. The virtual mass
coefficient Cy decreases from 2/3 to ∼0.5. The mean value
(t $ 5) is slightly greater for the turbulent thermals (0.54 com-
pared to 0.52). Fr is also approximately constant with height
beyond spinup time. However, Fr is smaller than for the
HIGHRES turbulent thermals, about 1.25 versus 1.5 for the
laminar thermals. This is consistent with the greater entrain-
ment efficiency of the HIGHRES thermals.

Perhaps the most interesting difference compared to the
LOWRES laminar thermals is a weakly negative drag for the
HIGHRES turbulent thermals. In HIGHRES, values of Cd

are close to 0 near spinup, then decrease to20.2 to20.3 from
t ∼ 1 to 10, then settle to about20.1 for the rest of the simula-
tions (with an ensemble spread from roughly 20.05 to20.15).
This behavior contrasts with Cd ≈ 0.01 for the LOWRES

FIG. 4. Time series of terms in the thermal vertical velocity bud-
get for one realization of the LOWRES ensemble. Terms are ther-
mal vertical acceleration dw/dt (black), buoyant forcing B (red),
dynamic pressure forcing (2r21FpD, green), buoyant pressure forc-
ing (2r21FpB, blue), and entrainment calculated as a residual
(r21E, orange). The horizontal black line indicates the time be-
yond which the iterative analytic scaling method is used to track
thermal boundaries.
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thermals. Weakly negative drag for the HIGHRES thermals
is robust; all ensemble members at all times for t . 5 have
negative Cd, and similar Cd values occur using the LJ2019
method to obtain thermal boundaries instead of our iterative
method (moreover, the dynamic pressure calculation is calcu-
lated by CM1’s pressure solver, and thus is internally consis-
tent with the flow calculations in the model). Applying
ensemble and time-averaged values (for t$ 5) of a, g, Cy, and
Fr in the theoretical estimate from (13) gives Cd ≈ 20.05 for
the turbulent thermals, close to the actual Cd ≈ 20.1.

We apply a Welch’s t test to examine statistical significance of
the differences in Cd between the LOWRES and HIGHRES
thermals (valid for unequal sample sizes and variances). We
compare time-averaged Cd values (t $ 10, when Cd is fairly
steady for both LOWRES and HIGHRES) for the eight-mem-
ber LOWRES and five-member HIGHRES ensembles. The t
statistic is 9.85 (degrees of freedom equal to 4), and the differ-
ence in Cd between the two ensembles is statistically significant
at a 99.9% confidence level. As we discuss below, weakly nega-
tive drag for the HIGHRES thermals and nearly zero drag for
LOWRES are also consistent with the respective flow fields.

Weakly negative drag for the HIGHRES thermals may
seem counterintuitive, but it is consistent with fundamental
physical constraints. From an energetics standpoint, negative
drag implies turbulent thermals are more efficient at convert-
ing buoyant potential energy into kinetic energy within the
thermal (more kinetic energy for the thermal and less for the
environment, all else equal), than the LOWRES thermals
with nearly zero drag. Thus, negative drag does not violate
energy conservation. In other words, since the fluid is ini-
tially motionless, kinetic energy everywhere in the domain
must come from buoyant potential energy, while drag
and entrainment affect how it is partitioned between the
thermal and environment. A key is that the thermals are
not steady state}most importantly, they entrain mass from
the surrounding fluid and expand in volume over time. This
implies an effective “entrainment force” that acts in opposi-
tion to negative drag (upward-directed force) and buoyant
forcing on the thermal, consistent with the momentum bud-
get and d’Alembert’s principle. In contrast, negative drag is
impossible for a solid body in statistically steady flow since it
cannot exchange mass with the surrounding fluid.

FIG. 5. Time series of (a) virtual mass coefficient Cy, (b) shape parameter g, (c) Froude num-
ber Fr, and (d) drag coefficient Cd from all eight members of the LOWRES ensemble (black
lines) and the ensemble mean (red lines). The horizontal black lines indicate the time beyond
which the iterative analytic scaling method is used to track thermal boundaries.
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c. Interpretation of thermal drag results

Why is drag different for the LOWRES laminar and HIGH-
RES turbulent thermals? By definition, drag is determined by
the volume integral of 2­pD/­z, or alternatively, pDn̂ · k̂ inte-
grated along the top and bottom thermal surfaces following
Gauss’s theorem. This means that nonzero drag is associated

with a vertical asymmetry in the pD field between the top and
bottom of the thermal. Vertical asymmetry in pD in turn must
fundamentally arise from vertical asymmetry in the flow. This
follows from the nature of the Laplacian operator in the Pois-
son equation for pD which has the form ∇2pD = S; asymmetric
solutions are possible if and only if the “source” term S on the
right-hand side, which corresponds to divergence and rotational

FIG. 6. As in Fig. 2, but for one realization of the HIGHRES ensemble at t = (top) 3.1, (middle) 10.7, and (bottom) 15.3.
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terms of the flow field, is itself asymmetric (or the boundary
conditions are asymmetric, which is not relevant here). Con-
versely, a vertically symmetric pressure field and hence zero
drag must be associated with a vertically symmetric flow field
giving a vertically symmetric S in the Poisson pD equation. A
key result is that, after spinup, thermal-relative flow for the
LOWRES laminar thermals is nearly vertically symmetric,
whereas it is vertically asymmetric for the HIGHRES turbulent
thermals. Thus, the flow structures of the LOWRES and
HIGHRES thermals are consistent with nearly zero drag of the
former and nonzero drag of the latter. These flow differences
are readily seen from the vertical cross sections in Figs. 2c, 2f,
2i, 6c, 6f, and 6i. For the laminar thermals, the centers of rota-
tion of the azimuthally averaged flow (seen by maxima in c and
vorticity magnitude, for example, located near X = 14 and 19 at
a height of 19 in Fig. 2f) are located halfway between the ther-
mal bottom and top, and the streamlines and vorticity fields ap-
pear nearly vertically symmetric around this central axis. In
contrast, the main centers of rotation for the turbulent ther-
mals are displaced to the upper part of the thermals, about 1/3
of the distance from the thermal top. For example, the thermal

top is located at a height of 12.6, the bottom at 8.8, and the cen-
ters of rotation are located near 11.1–11.2 for the turbulent ther-
mal in Fig. 6i. These same flow differences were also seen in the
DNS of laminar and turbulent thermals in LJ2019, indicating
the differences are robust and not due to using a particular
model or configuration.

Vertical symmetry of the laminar thermals and asymmetry
of the turbulent thermals is further illustrated in Fig. 9. This
figure shows vertical profiles of core w (blue lines) and |hy|
(red lines), relative to the height of the center of rotation
Zcen, at t ≈ 15. Zcen is defined by the height of maximum c.
Core w is a horizontal average within 3Dx of the central verti-
cal axis, while |hy| profiles are a horizontal average across the
whole thermal (similar results are obtained for |hx| given axi-
symmetry of the problem). The laminar thermals are nearly
vertically symmetric (Fig. 9a), with only a slight difference
(one to two grid points) in distance of Zcen to the top and bot-
tom thermal boundaries and nearly identical profiles of w and
|hy| between the upper and lower thermal regions. This sym-
metry is explained by the structure of the buoyancy field. The
thermal’s toroidal circulation wraps environmental fluid into
its interior and around the circulation centers. As a result,

FIG. 7. As in Fig. 3, but for the five-member HIGHRES turbulent thermal ensemble. Note that
thermal w for the five different realizations differ but are indistinguishable in the figure.
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nonzero buoyancy quickly becomes concentrated right at
these circulation centers and is almost vertically symmetric
about them (see Figs. 2b,c). This B structure drives horizontal
spread of the thermals (McKim et al. 2020; MPS2021) but
they maintain near vertical symmetry. Thus, even though the
laminar thermals contain buoyancy and are not steady state,
from the standpoint of drag they are very similar to Hill’s ana-
lytic steady state vortex which formally has no drag (as noted
in the introduction, its flow and pD fields have exact vertically
symmetry).

Vertical asymmetry of the flow for the HIGHRES thermals
is clearly seen in Fig. 9b. The distance from thermal top to
Zcen is much smaller than that from the thermal bottom to
Zcen, corresponding to displacement of Zcen to the upper part
of the HIGHRES thermals. This is associated with relatively
weak w in the upper part of the thermal compared to the
lower part as a function of distance from Zcen (cf. the solid
and dotted blue lines in Fig. 9b). Note, however, that thermal-
relative w = 0 both at the top and bottom thermal boundaries,
which is indeed required for a coherent rising thermal.
Weaker w at a given distance from Zcen in the upper part of
the thermal is accompanied by larger |hy|. This is consistent
with more small-scale velocity fluctuations in that region
leading to greater |hy|, where these turbulent eddies enhance

dissipation of w momentum associated with the thermal’s
azimuthally averaged flow compared to lower in the ther-
mal. For example, in Fig. 9 the turbulent thermal shows
only a small decrease in |hy| of ∼20% from Zcen to the thermal
top, while there is a much larger decrease in |hy| between Zcen

and the thermal bottom of ∼70%. This flow structure is as-
sociated with a higher thermal-relative, azimuthally aver-
aged flow speed s along the upper compared to lower thermal
boundary.6 The likely explanation for this asymmetry in
turbulence and hence |hy| is because entrainment of envi-
ronmental fluid occurs near the thermal bottoms and this
inflow is mostly laminar since the surrounding environmen-
tal flow is mostly laminar (consistent with LJ2019), while it
takes time for turbulence to develop as the entrained fluid
is wrapped upward into the thermal’s core and around its
toroidal circulation. This is consistent with less turbulence
in the lower part and more turbulence in the upper part of

FIG. 8. As in Fig. 5, but for the five-member HIGHRES turbulent thermal ensemble.

6 Although the flow speed along the thermal’s upper boundary
is greater than along the lower boundary, total momentum of the
azimuthally averaged toroidal circulation flow is much smaller
above Zcen than below consistent with overall greater dissipation
of the larger-scale flow aboveZcen.
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the thermals (e.g., seen in the hy field in Fig. 6, especially
Figs. 6c and 6f).

Greater flow speed along the upper boundary of the
HIGHRES thermals is readily understood by the upward dis-
placement of their rotation centers, meaning streamlines are
more tightly packed in the upper part of the thermal. It is also
consistent with larger vertical gradients of core w in that part
of the thermal (and thus greater horizontal flow speed via
mass continuity) consistent with the w profile discussed above.
As we noted, vertical asymmetry in the pD field and hence
nonzero drag on the HIGHRES thermals is fundamentally as-
sociated with vertical asymmetry of the flow by virtue of the
Poisson pD equation. We can invoke Bernoulli’s relation
s2/2 1 pD/r = constant (s is the flow speed) for steady flow
along a streamline}in our case, along c = 0 defining the thermal
boundary}to understand qualitatively why faster flow along the
upper compared to lower thermal boundary gives negative rather
than positive drag (keeping in mind this relation is only approxi-
mate, since the thermal’s flow is nonsteady and there are contri-
butions from B and pB, though B is concentrated away from the
thermal boundary). At the time shown in Fig. 9, s2/2 is on aver-
age 31% higher along the upper compared to lower boundary of
the turbulent thermal, consistent with lower pD along the upper
compared to lower boundary. In contrast, the flow speed in
LOWRES is almost the same along the lower and upper thermal
boundaries (1% higher average s2/2 along the lower compared
to upper boundary at the time shown in Fig. 9). A conceptual
diagram summarizing results for drag on the LOWRES and
HIGHRES thermals is shown in Fig. 10.

Note that the mechanism for how turbulence impacts drag
for the HIGHRES thermals is qualitatively different than that
for solid bodies in flow. The transition to turbulence at suffi-
ciently high Reynolds number for solid bodies in flow is usu-
ally accompanied by a sharp decrease in Cd as a narrow
turbulent wake develops (drag crisis). This alters the pressure
distribution mainly downstream of the body, leading to a rela-
tively smaller pressure difference on the downstream com-
pared to upstream side of the body and hence reduced Cd

compared to laminar flow. In contrast, thermals represent a
region within a continuous fluid with a well-defined circu-
lation and exchange of mass with the surrounding fluid, and
turbulence in the HIGHRES thermals occurs within the
thermals, especially in their upper regions. This produces a
much different flow and pressure response for thermals and
hence impact on drag compared to flows around solid bodies
that develop a turbulent wake.

Using mean values of Cy, a, Fr, and g from the simulations
in the theoretical expression (13), we get Cd ≈ 0.02 for the
laminar and ≈20.05 for the turbulent thermals. Thus, the the-
oretical approach}which relies on combining the similarity
solution with the w momentum budget}is able to discern be-
tween weakly negative drag for the turbulent thermals and
very small positive drag for the laminar ones. In the theoreti-
cal expression for Cd, this difference in sign arises because of
the larger spreading rate a of the turbulent compared to lami-
nar thermals. It is emphasized, however, that correct predic-
tion of the sign of drag by the theory may have been
somewhat fortuitous; small Cd from the theory for both the

FIG. 9. Vertical profiles of thermal core vertical velocity w (blue lines) and absolute value of
vorticity in the y–z plane |hy| (red lines) as a function of distance from thermal’s center height
Zcen (defined by the height of maximum streamfunction c). (a),(b) Results from single realiza-
tions of the LOWRES ensemble at t = 15.2 and the HIGHRES ensemble at t = 15.3. Solid lines
show profiles from Zcen to the thermal bottom (“lower”) and dotted lines from Zcen to the ther-
mal top (“upper”). Profiles of w are averaged within 3Dx of the thermal’s vertical central axis.
Profiles of |hy| are averaged over the whole thermal width.
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laminar and turbulent cases comes from the difference be-
tween order-of-magnitude-larger terms in (13).

5. Summary and conclusions

In this study we investigated dynamic pressure drag on
rising dry thermals in a neutrally stable, unsheared environ-
ment with incompressible Boussinesq dynamics. Using the
drag law Fd = Cdrw

2A/(2V) with Fd equal to the dynamic
pressure drag force, a theoretical estimate of Cd was derived
based on combining the similarity solution of Scorer (1957)
with the thermal momentum budget equation. This estimate
gave Cd as a function of four empirically derived parameters:
the expansion rate of thermal radius a ≡ dR/dz, a parameter
g related to the thermal shape (g ≡ AR/V), the virtual mass
coefficient Cy, and the Froude number Fr, which are all ap-
proximately constant with height for t . 10. Using values of
these parameters from past studies in this estimate suggests
that thermal drag is small, with Cd ∼ 20.1 to 0.15. This study
focused specifically on dynamic pressure drag. There is also
an effective “drag” from buoyant pressure forcing on ther-
mals. This forcing can be understood from the shape of the
buoyancy field, and our results for buoyant pressure forcing
were in line with previous studies (e.g., Tarshish et al. 2018).
Namely, the buoyant forcing was reduced by a factor of 1/3
for initially spherical thermals to ∼1/2 after spinup when the
thermals became spheroidal and horizontally elongated.

Two sets of numerical simulations of thermals using the
CM1 model in LES configuration were analyzed. The first set
had a relatively low effective Reynolds number with 20 model
grid points across the initial thermals (LOWRES). The
second set had about an order-of-magnitude-higher effective
Reynolds number with 100 grid points across the initial ther-
mals (HIGHRES). To improve robustness we ran eight and
five ensemble members for LOWRES and HIGHRES,

respectively. Both the LOWRES and HIGHRES simulations
produced thermals that conformed well to the similarity the-
ory, with approximately constant a, g, Cy, and Fr after the ini-
tial spinup. One notable difference between the LOWRES
laminar and HIGHRES turbulent thermals was a 40% higher
a for the turbulent thermals, which is consistent with previous
results based on DNS of laminar and turbulent thermals
(LJ2019). Dynamic pressure drag was small in both the LOW-
RES and HIGHRES simulations (compared to that for flow
around a solid sphere). Thus, the thermal momentum budget
was primarily a balance between positive forcing from buoy-
ancy and negative forcing from buoyant pressure forcing and
momentum entrainment. Dynamic pressure forcing was an or-
der of smaller magnitude than these other terms.

A key result from this study was a small but robust differ-
ence in Cd between the LOWRES laminar and HIGHRES
turbulent thermals. After spinup the laminar thermals had
Cd ≈ 0.01, while the turbulent thermals had weakly negative
drag with Cd ≈ 20.1. This difference was explained by near
vertical symmetry of the thermal flow in LOWRES but con-
siderable vertical asymmetry in HIGHRES. The difference in
drag is simple to understand given that dynamic pressure
drag can be defined by the difference in pD between thermals’
top and bottom boundaries, and asymmetry in pD requires
an asymmetry in the flow. The laminar LOWRES thermals
were nearly vertically symmetric because the buoyancy field
quickly became concentrated near the centers of rotation of
the main toroidal circulation and were nearly symmetric
about them. This buoyancy structure led to baroclinic genera-
tion of vorticity and thermal expansion (McKim et al. 2020;
MPS2021), but this did little to break vertical symmetry of the
thermal flow structure.

In contrast, even though buoyancy was also concentrated
near the main rotation centers (though somewhat more dif-
fuse than in the laminar thermals), a vertical asymmetry in the

FIG. 10. Conceptual diagram of vertical cross sections showing (left) nearly zero drag for the laminar LOWRES
thermals and (right) weakly negative (upward-directed) drag for turbulent HIGHRES thermals. Arrows represent
flow and black lines represent streamlines. Flow is nearly vertically symmetric around the centers of rotation (marked
with “X”) in the laminar thermals. In the turbulent thermals, turbulence is concentrated in the upper part of the ther-
mals, leading to vertical asymmetry of the flow about the centers of rotation. The centers of rotation are displaced up-
ward which is associated with higher flow speeds and lower pressure along the upper compared to lower thermal
boundary, and hence negative drag.
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flow occurred for the turbulent HIGHRES thermals. Vertical
asymmetry in the azimuthally averaged flow was evident by
an upward shift of the main centers of rotation such that they
were located about 1/3 of the distance from the thermal top
(a result also seen in the turbulent thermal DNS of LJ2019).
This shift was mainly attributed to the impact of small-scale
eddies concentrated more in the upper part of the thermals,
particularly just after spinup when Cd was most negative
(∼20.3). Using values of a, g, Cy, and Fr obtained directly
from the simulations in the theoretical estimate of Cd gave a
small magnitude of drag for the simulated thermals. The theo-
retical estimate was able to discern between very small posi-
tive drag for the laminar thermals and weakly negative drag
for the turbulent thermals, but this may have been somewhat
fortuitous given that small drag in both cases resulted from
the difference between order-of-magnitude-larger terms in
the theoretical expression. We attributed vertical asymmetry
of the azimuthally averaged flow within the turbulent ther-
mals primarily to asymmetry in turbulence, also seen in the
DNS of LJ2019. However, we cannot rule out that buoyancy
differences during spinup compared to LOWRES (e.g., sharper
buoyancy gradients initially in HIGHRES) may have also
contributed to vertical asymmetry of the flow even after spinup,
in contrast to the flow symmetry in LOWRES.

Given the evident impact of small-scale resolved eddies in
HIGHRES, it is plausible that further increases in effective
Reynolds number Re could impact drag on simulated turbu-
lent thermals. For instance, we speculate that small-scale ed-
dies in this case could develop faster in the (thermal-relative)
ascending flow of entrained and initially nonturbulent fluid
flow in the lower part of the thermal. Faster development of
turbulence in this entrained fluid could plausibly reduce the
vertical asymmetry in small-scale eddies and thus reduce the
magnitude of negative drag. Runs with higher Re are beyond
current computational capability but would be interesting to
pursue in future work.

In this study, we focused on the simple case of dry thermals
in a neutrally stable, unstratified, unsheared environment. As
noted in the introduction, recent attention has focused on the
properties of moist thermals within cumulus clouds. Latent
heating was shown to have a large impact on the structure
and dynamics of moist thermals by modifying their buoyancy
structure and expansion rate, with a secondary impact of la-
tent cooling from evaporation (MPS2021). It is reasonable to
speculate that dynamic pressure drag on moist thermals could
also be strongly influenced by phase changes impacting the
buoyancy structure. Specifically, a vertical asymmetry in la-
tent heating and hence the B field (see Figs. 2 and 4 in
MPS2021) might be expected to drive vertical asymmetry in
the flow and thus dynamic pressure drag. Whether latent
heating increases or decreases with height (concentrating
buoyancy in the upper or lower parts of moist thermals) will
depend on the thermodynamic sounding and nature of dilu-
tion by entrained environmental air. Moreover, density strati-
fication leads to an increase in the expansion rate of thermals
(Anders et al. 2019; MPS2021) and could also drive vertical
asymmetry of the flow and hence drag on atmospheric thermals.

Dynamic pressure drag on moist thermals in a stratified environ-
ment will be a subject of future work.

There are many other factors that could potentially impact
drag on atmospheric thermals that were not considered here.
Given the evident impact of vertical asymmetry in small-scale
eddies concentrated in the upper part of thermals on the azi-
muthally averaged flow and drag, it is reasonable to believe
that entrainment of air from a turbulent as opposed to lami-
nar environment could impact drag. In particular, this might
be relevant to thermals rising within a turbulent PBL versus
those rising through a nonturbulent (or weakly turbulent) free
troposphere. Finally, there may be sensitivity to the initial ther-
mal shape. Here the thermals were initially spherical. Previous
studies (Bond and Johari 2010; Lai et al. 2015) have shown sen-
sitivity of thermal dynamics to the initial shape even after
spinup, particularly thermal spreading rates, and it is plausible
that nonspherical initial shape could also influence drag after
spinup. These topics are beyond the scope of this paper but
could be explored in future work.
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