Sensitivities of the WRF Lightning Forecasting Algorithm to Parameterized Microphysics and Boundary Layer Schemes
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Sensitivities of the WRF Lightning Forecasting Algorithm to Parameterized Microphysics and Boundary Layer Schemes

Filetype[PDF-1.22 MB]



Details:

  • Journal Title:
    Weather and Forecasting
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The Lightning Forecasting Algorithm (LFA), a simple empirical procedure that transforms kinematic and microphysical fields from explicit-convection numerical models into mapped fields of estimated total lightning flash origin density, has been incorporated into operational forecast models in recent years. While several changes designed to improve LFA accuracy and reliability have been implemented, the basic linear relationship between model proxy amplitudes and diagnosed total lightning flash rate densities remains unchanged. The LFA has also been added to many models configured with microphysics and boundary layer parameterizations different from those used in the original study, suggesting the need for checks of the LFA calibration factors. To assist users, quantitative comparisons of LFA output for some commonly used model physics choices are performed. Results are reported here from a 12-member ensemble that combines four microphysics with three boundary layer schemes, to provide insight into the extent of LFA output variability. Data from spring 2018 in Nepal–Bangladesh–India show that across the ensemble of forecasts in the entire three-month period, the LFA peak flash rate densities all fell within a factor of 1.21 of well-calibrated LFA-equipped codes, with most schemes failing to show differences that are statistically significant. Sensitivities of threat areal coverage are, however, larger, suggesting substantial variation in the amounts of ice species produced in storm anvils by the various microphysics schemes. Current explicit-convection operational models in the United States employ schemes that are among those exhibiting the larger biases. For users seeking optimum performance, we present recommended methods for recalibrating the LFA.
  • Keywords:
  • Source:
    Weather and Forecasting, 35(4), 1545-1560
  • DOI:
  • ISSN:
    0882-8156;1520-0434;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26.1