Drivers of variability of Calanus finmarchicus in the Gulf of Maine: roles of internal production and external exchange
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Drivers of variability of Calanus finmarchicus in the Gulf of Maine: roles of internal production and external exchange

Filetype[PDF-1.23 MB]



Details:

  • Journal Title:
    ICES Journal of Marine Science
  • NOAA Program & Office:
  • Description:
    The lipid-rich calanoid copepod, Calanus finmarchicus, plays a critical role in the Gulf of Maine pelagic food web. Despite numerous studies over the last several decades, a clear picture of variability patterns and links with key environmental drivers remains elusive. This study applies model-based scaling and sensitivity analyses to a regional plankton dataset collected over the last four decades (1977–2017). The focus is to describe the gulf-wide spatio-temporal patterns across three major basins, and to assess the relative roles of internal population dynamics and external exchanges. For the spring stock, there is strong synchrony of interannual variability among three basins. This variability is largely driven by internal population dynamics rather than external exchanges, and the internal population dynamics are more sensitive to the change of top-down mortality regime than the bottom-up forcings. For the fall stock, the synchrony among basins weakens, and the variability is influenced by both internal mortality and external dilution loss. There appears to be no direct connection between the spring stock with either the preceding or subsequent fall stock, suggesting seasonal or sub-seasonal scales of population variability and associated drivers. The results highlight seasonally varying drivers responsible for population variability, including previously less recognized top-down control.
  • Source:
    ICES Journal of Marine Science, 79(3), 775-784
  • ISSN:
    1054-3139;1095-9289;
  • Format:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26