Long‐Term Slowdown of Ocean Carbon Uptake by Alkalinity Dynamics
Supporting Files
-
2023
Details
-
Journal Title:Geophysical Research Letters
-
Personal Author:
-
NOAA Program & Office:
-
Description:Oceanic absorption of atmospheric carbon dioxide (CO2) is expected to slow down under increasing anthropogenic emissions; however, the driving mechanisms and rates of change remain uncertain, limiting our ability to project long-term changes in climate. Using an Earth system simulation, we show that the uptake of anthropogenic carbon will slow in the next three centuries via reductions in surface alkalinity. Warming and associated changes in precipitation and evaporation intensify density stratification of the upper ocean, inhibiting the transport of alkaline water from the deep. The effect of these changes is amplified threefold by reduced carbonate buffering, making alkalinity a dominant control on CO2 uptake on multi-century
-
Keywords:
-
Source:Geophysical Research Letters, 50(4)
-
DOI:
-
ISSN:0094-8276 ; 1944-8007
-
Format:
-
Publisher:
-
Document Type:
-
License:
-
Rights Information:CC BY
-
Compliance:Library
-
Main Document Checksum:urn:sha256:aa4be391a4df3606c9ef03b8d4175a74c795c5e0b09d43fd6d9dbf0cb16d82fd
-
Download URL:
-
File Type:
Supporting Files
ON THIS PAGE
The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles,
guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the
NOAA IR retains documents in their original published format to ensure public access to scientific information.
You May Also Like