Geostationary Precipitation Estimates by PDF Matching Technique over the Asia-Pacific and Its Improvement by Incorporating with Surface Data
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Geostationary Precipitation Estimates by PDF Matching Technique over the Asia-Pacific and Its Improvement by Incorporating with Surface Data

Filetype[PDF-6.61 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Atmosphere
  • Description:
    An Infrared (IR)-passive microwave (PMW) blended technique is developed to derive precipitation estimates over the Asia-Pacific domain through calibrating the temperature of brightness blackbody from the Japanese Himawari-8 satellite to precipitation derived from the combined PMW retrievals (currently MWCOMB2x) based on the probability density function (PDF)-matching concept. Called IRQPE, the technique is modified and fine-tuned to better represent the spatially rapidly changing cloud–precipitation relationship over the target region with PDF-matching tables established over a refined spatial resolution of 0.5° lat/lon grid. The evaluation of the IRQPE shows broadly comparable performance to that of the CMORPH2 in detecting rainfall systems of large and medium-scales at a resolution of 1.0° degree. Rainfall variations from the two datasets over El Niño-Southern Oscillation and the Madden Julian Oscillation active convective centers show well consistency of each other, suggesting usefulness of the IRQPE in climate applications. Two approaches for regional improvements are explored by establishing the PDF tables for a further refined spatial resolution and by replacing the PMW-based precipitation ‘truth’ fields with the surface gauge data to overcome the shortcoming of PMW-based retrievals in capturing orographic rainfall over the Taiwan area. The results show significant improvements. The rainfall patterns of revised the IRQPE at a resolution of 0.1° degree on above the 5-day timescale correlate well with the Taiwan official surface ground truth called the QPESUMS, which is a gridded set of gauge-corrected Radar quantitative precipitation estimations. The root mean square error of the revised IRQPE on estimating the Taiwan overall land rainfall is close to Radar-derived rainfall accumulations on a 30-day time-scale.
  • Source:
    Atmosphere, 14(2), 342
  • ISSN:
    2073-4433
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26