Vegetation, ground cover, soil, rainfall simulation, and overland-flow experiments before and after tree removal in woodland-encroached sagebrush steppe: the hydrology component of the Sagebrush Steppe Treatment Evaluation Project (SageSTEP)
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Vegetation, ground cover, soil, rainfall simulation, and overland-flow experiments before and after tree removal in woodland-encroached sagebrush steppe: the hydrology component of the Sagebrush Steppe Treatment Evaluation Project (SageSTEP)

Filetype[PDF-19.24 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Earth System Science Data
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Rainfall simulation and overland-flow experiments enhance understanding of surface hydrology and erosion processes, quantify runoff and erosion rates, and provide valuable data for developing and testing predictive models. We present a unique dataset (1021 experimental plots) of rainfall simulation (1300 plot runs) and overland-flow (838 plot runs) experimental plot data paired with measures of vegetation, ground cover, and surface soil physical properties spanning point to hillslope scales. The experimental data were collected at three sloping sagebrush (Artemisia spp.) sites in the Great Basin, USA, each subjected to woodland encroachment and with conditions representative of intact wooded shrublands and 1–9 years following wildfire, prescribed fire, and/or tree cutting and shredding tree-removal treatments. The methodologies applied in data collection and the cross-scale experimental design uniquely provide scale-dependent, separate measures of interrill (rain splash and sheet flow processes, 0.5 m2 plots) and concentrated overland-flow runoff and erosion rates (∼9 m2 plots), along with collective rates for these same processes combined over the patch scale (13 m2 plots). The dataset provides a valuable source for developing, assessing, and calibrating/validating runoff and erosion models applicable to diverse plant community dynamics with varying vegetation, ground cover, and surface soil conditions. The experimental data advance understanding and quantification of surface hydrologic and erosion processes for the research domain and potentially for other patchy-vegetated rangeland landscapes elsewhere. Lastly, the unique nature of repeated measures spanning numerous treatments and timescales delivers a valuable dataset for examining long-term landscape vegetation, soil, hydrology, and erosion responses to various management actions, land use, and natural disturbances. The dataset is available from the US Department of Agriculture National Agricultural Library at https://data.nal.usda.gov/search/type/dataset (last access: 7 May 2020) (doi: https://doi.org/10.15482/USDA.ADC/1504518; Pierson et al., 2019).
  • Keywords:
  • Source:
    Earth System Science Data, 12(2), 1347-1365
  • DOI:
  • Document Type:
  • Place as Subject:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1