The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Uncertainty-Based Active Learning via Sparse Modeling for Image Classification
-
2018
-
-
Source: IEEE Transactions on Image Processing, vol. 28, no. 1, pp. 316-329
Details:
-
Journal Title:IEEE Transactions on Image Processing
-
Personal Author:
-
NOAA Program & Office:
-
Description:Uncertainty sampling-based active learning has been well studied for selecting informative samples to improve the performance of a classifier. In batch-mode active learning, a batch of samples are selected for a query at the same time. The samples with top uncertainty are encouraged to be selected. However, this selection strategy ignores the relations among the samples, because the selected samples may have much redundant information with each other. This paper addresses this problem by proposing a novel method that combines uncertainty, diversity, and density via sparse modeling in the sample selection. We use sparse linear combination to represent the uncertainty of unlabeled pool data with Gaussian kernels, in which the diversity and density are well incorporated. The selective sampling method is proposed before optimization to reduce the representation error. To deal with l 0 norm constraint in the sparse problem, two approximated approaches are adopted for efficient optimization. Four image classification data sets are used for evaluation. Extensive experiments related to batch size, feature space, seed size, significant analysis, data transform, and time efficiency demonstrate the advantages of the proposed method.
-
Keywords:
-
Source:IEEE Transactions on Image Processing, vol. 28, no. 1, pp. 316-329
-
DOI:
-
Format:
-
Document Type:
-
Rights Information:Accepted Manuscript
-
Rights Statement:The NOAA IR provides access to this content under the authority of the government's retained license to distribute publications and data resulting from federal funding. While users may legally access this content, the copyright owners retain rights that govern the reproduction, redistribution, and re-use of this work. The user is solely responsible for complying with applicable copyright law.
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: