

1

Uncertainty Based Active Learning via Sparse
Modeling for Image Classification

Gaoang Wang, Jenq-Neng Hwang, Craig Rose, Farron Wallace

Abstract—Uncertainty sampling based active learning has been
well studied for selecting informative samples to improve the
performance of a classifier. In batch mode active learning, a batch
of samples are selected for a query at the same time. The samples
with top uncertainty are encouraged to be selected. However, this
selection strategy ignores the relations among the samples because
the selected samples may have much redundant information with
each other. This paper addresses this problem by proposing a
novel method that combines uncertainty, diversity and density via
sparse modeling in the sample selection. We use sparse linear
combination to represent the uncertainty of unlabeled pool data
with Gaussian kernels, in which the diversity and density are well
incorporated. Selective sampling method is proposed before
optimization to reduce the representation error. To deal with 𝒍𝒍𝟎𝟎
norm constraint in the sparse problem, two approximated
approaches are adopted for efficient optimization. Four image
classification datasets are used for evaluation. Extensive
experiments related to batch size, feature space, seed size,
significant analysis, data transform and time efficiency
demonstrate the advantages of the proposed method.

Index Terms—active learning, sparse modeling, diversity, CNN

I. INTRODUCTION

N real-world applications based on machine learning Itechniques, it is usually very easy to collect a huge amount of
unlabeled data. On the other hand, large number of labeled data
are expensive to obtain. In such cases, there would be a huge
labeling cost for supervised based learning. Besides that, the
classifiers of supervised learning methods are always trained on
a specific dataset, and the performance degrades when tested on
a slightly different dataset. This is because the testing dataset
may not be well represented by the training dataset. Moreover,
for practical applications, it is unreasonable to re-train a
supervised classifier based on the new dataset. Therefore, we
always need to label the new dataset, which is expensive and
non-trivial for automatic classification. Fortunately, such
problems can be addressed by semi-supervised learning and
active learning methods.

Semi-supervised learning methods usually look for
additional constraints and the data structures in the unlabeled
dataset to improve the performance of trained classifiers
[1,2,3,4,34]. In [1], pairwise must-link and cannot-link are
taken as constraints for mixture modeling. For image
classification, key words associated with both labeled and
unlabeled data are used to improve the performance of the semi-
supervised classifiers [2]. Manifold regularization for multi-

label image classification is taken advantage of in [3]. The
transductive support vector machine (TSVM) is also adopted in
semi-supervised learning [4]. Some methods for semi-
supervised learning are not intrinsically geared to learning from
both unlabeled and labeled data, but instead they make use of
unlabeled data within a supervised learning framework. Take
self-training for example [17,18], a supervised learning
algorithm is first trained based on the labeled data. This
classifier is then applied to the unlabeled data to generate more
labeled examples as input for the supervised learning algorithm.
Since the generated labels are not the actual ground truth, errors
may be introduced in the training if the initial classifier is not
robustly trained. For semi-supervised learning, the training is
not stable, and can even collapse if the assumptions and the
additional constraints are not actually the fact.

Different from semi-supervised learning, active learning
algorithms are able to interactively query the reliable labeler for
ground truth to obtain new training data, and eventually
overcome the deficiency of semi-supervised learning.
Generally, there are two different settings to do the sample
selection in active learning. One is purely relying on
unsupervised approach to select samples based on the data
structure of unlabeled samples without any knowledge of the
ground truth labels [14,15,19,20,37]; the other is selecting
samples with the help of an initially trained supervised classifier
based on a seed set of limited labeled samples
[5,6,7,8,35,36,38]. For the first category, since no information
of ground truth is given at the beginning, most sample selection
strategies are reconstruction based approaches, i.e., the top most
informative samples that can represent the whole unlabeled
dataset are selected. For the second category, since ground truth
labels are provided by a limited number of seed set, the
information given by the initially trained classifier can be well
utilized. Since the data structure of unlabeled data can also be
exploited for the second category, a combination of utilizing the
data structure and the initially trained classifier is adopted in
recent active learning studies [9,12,13,53,59,61]. In most of
such approaches, not only the samples with high uncertainty,
but also the samples with representativeness are taken into
consideration in the sample selection process.

In addition, different active learning approaches are designed
for different applications [43,44,45,46,47,48], respectively.
More specifically, active learning is combined with self-paced
learning [43] for face identification using convolutional neural
networks. Active learning strategy is also explored [44] for
training relative attribute ranking functions, with the goal of

2

requesting human comparisons only where they are most
informative. In [45,47], active learning is adopted for image
classification problems. Specifically, most informative samples
are selected for human labeling based on the output of deep
neural networks [45], while in [47] visual and textual
information are effectively combined for classification. In [48], i
a novel approach is proposed for live learning of object
detectors, in which the system autonomously refines its models
by actively requesting crowd-sourced annotations on images
crawled from the Web.

In this paper, we present a novel batch mode approach that
combines the information given by an initially trained classifier
and the data structure of unlabeled samples via sparse modeling
based on uncertainty sampling. We discuss the contributions
and advantages of our proposed method as follows.

(1) Represent sample uncertainty via Gaussian kernels.
In the sample selection, we use sparse linear combination of
Gaussian kernels to represent the uncertainty scores of
unlabeled samples. As a result, uncertainty, diversity and
density are combined in the sample selection via sparse
representation.

(2) Selective sampling. Inspired from [62], we propose
selective sampling approach before the optimization. The
samples with low uncertainty are filtered out by locality
thresholding. There are two advantages of this selective
sampling strategy. On one side, the sparse representation is no t
longer influenced by low uncertainty samples. As a result, the
representation error can be largely reduced. On the other side,
the number of candidate samples for selection is reduced
dramatically, which results in faster convergence during
optimization.

(3) Efficient optimization by approximated approaches.
We propose two approximated approaches to solve the sparse
modeling problem. The first one is based on a greedy search
method. Samples are sequentially selected to maximize the
reduction of total uncertainty. For the second approach, the
sparse representation problem is converted into a quadratic
programming formulation. t

The outline of the paper is as follows: In Section II, we i
review some related work of active learning. The sparse
modeling of the proposed method is then introduced in Section i
III. In Section IV, modification of sparse modeling is
introduced in the sample selection. Experiments are presented
in Section V. Finally, we provide some conclusions and future t
work in Section VI.

II. RELATED WORK
Active learning shows great power of improving the

robustness of classifiers when dealing with limited training data
or even without any labeled ground truth. Representativeness of
data has been studied in the sample selection strategy when no
ground truth labels are given. As it is important to exploit the
data distribution when selecting the data to be labeled [16],
representativeness sampling tries to select the most
representative data points according to the distribution of
unlabeled data. For e xample, some well-known approaches of
representativeness sampling [14,15,19,20,37] have been

reported. In [20], a simple concept, called transductive
experimental design, is proposed to explore available unlabeled
data. In [14], the most representative points to reconstruct the
whole dataset are selected in active learning by the locally linear
reconstruction algorithm. Similarly, in [15], sparsity is taken
nto consideration in the reconstruction scheme for the sample

selection. More recently, locality information by neighborhood
samples is utilized in the reconstruction in [19]. However, for
representativeness sampling based active learning, since no
ground truth label information is given in the experiment
setting, the sample selection is purely processed in an
unsupervised way. Therefore, the sampling strategy may
become inefficient if some assumptions are not met in the
unsupervised learning.

On the other hand, some active learning methods take
advantage of a set of seed labeled samples to initialize the
classifiers [41], such as uncertainty sampling, query-by-
committee, expected model change and expected error
reduction, etc. Uncertainty sampling is a good way to utilize a
pre-trained model in the sample selection. For example, for
binary problems, feature points that are close to the
classification boundary are chosen to label as the most uncertain
samples [5,6,7,8] based on different types of classifiers, like
neural networks [5,6] and support vector machines (SVMs)
[7,8,35,38,57]. For multi-class classification problems, the first
wo most likely predictions are used to calculate the uncertainty

[10,11]. However, the performance of such uncertainty
sampling based active learning largely depends on the
robustness of the pre-trained classifiers. Sometimes uncertainty
sampling even works worse than random sampling in scenarios
when very limited labeled data are used to train the initial
classifier [21,22,23].

Since the representativeness of the unlabeled data can also be
utilized with a pre-trained classifier, many recent approaches
have incorporated the representativeness in their uncertainty
design to overcome the weakness of uncertainty sampling based
methods [9,12,13,42,53]. In [9], the distribution of the data is
aken into consideration in the sample selection. Diversity is
ncorporated in the version space reduction in [12]. In [42], a

convex optimization framework is proposed with diversity
ncorporated in active learning with an arbitrary classifier.

The most recent and related work with diversity
maximization in the sample selection is proposed in [13], where
he sample selection is modeled as an optimization problem

with the following formulation,

1
𝑓𝑓 = argmin𝑓𝑓 − 𝑓𝑓𝑇𝑇𝑠𝑠 +

2
𝑓𝑓𝑇𝑇𝐾𝐾𝑓𝑓,

𝑛𝑛 s. t. ∑𝑖𝑖=1 𝑓𝑓𝑖𝑖 = 1, 𝑓𝑓𝑖𝑖 ≥ 0, (1)

where 𝑓𝑓 is the updated ranking score, vector 𝑠𝑠 is the sample
�𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗�uncertainty, 𝐾𝐾 is a kernel matrix with 𝐾𝐾𝑖𝑖,𝑗𝑗 = exp(−)

𝜎𝜎2

which measures the similarity between points 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 . The
first term −𝑓𝑓𝑇𝑇𝑠𝑠 penalizes less if samples with high uncertainty
also get high ranking scores. With the kernel matrix 𝐾𝐾 in the
second term, 𝑓𝑓𝑇𝑇𝐾𝐾𝑓𝑓, the algorithm tends to give high ranking

2

3

Fig. 1. The flowchart of the learning system.

scores to samples with low similarity. The problem is optimized
to find the best trade-off between the uncertainty and the
diversity. It shows great power in classification problems with
diversity maximization. However, there are two major
weaknesses in the algorithm: 1) Isolated distinct samples with
high uncertainty are encouraged to be selected. This is because
isolated samples are always dissimilar to other samples.
Therefore Eq. (1) will generate little penalty on the second term.
However, since isolated samples are far away from the data
density, these samples are “unimportant” or outliers. Selecting
such samples is not very helpful in improving the classifier
performance. This strategy results in inefficient selection
especially when we are interested in selecting a small batch of
samples. 2) The algorithm does not take the batch size into
consideration during optimization. In fact, the batch size does
matter in the sample selection. Take an extreme situation for
example. If the batch size is one, then the sample that lies in the
center of the pool data would be the most representative sample.
However, if the batch size is two, then we may divide the pool
data into two clusters and the sample near the center of each
cluster would be the most representative sample. In other words,
the selection strategy should vary with the batch size. To
address these issues, active learning via sparse modeling is
proposed in the following section.

III. SPARSE MODELING AND AN APPROXIMATED SOLUTION

The flowchart of our proposed framework is shown in Fig. 1.
First, a multi-class SVM classifier is initially trained on the
labeled data at the beginning. Then we apply the trained
classifier on the unlabeled data. Based on the SVM predictions,
sparse modeling via Gaussian kernels is used for sample
selection. Then these selected samples are labeled and moved
from unlabeled set to labeled set. At the end of each iteration,
the classifier is re-trained with the updated labeled set. Finally,
the performance of active learning is evaluated on an
independent testing dataset. In this section, we will introduce
the multi-class SVM classifier, uncertainty measure design,
sample selection and an approximated solution to the sparse

problem. Note that, in this paper we only use SVM classifiers
for our active learning due to the much lower computational
complexity requirement, compared to most recent high
computational demanding convolution neural networks
(CNNs). In fa ct, the proposed scheme can also be used in many
types of classifiers, such as CNNs, if the complexity
requirements can be relaxed.

A. Multi-Class SVM Overview
For a multi-class classification problem, we can train linear

SVM [32] classifiers based on the “one vs. the rest” strategy.
Assume we have 𝐾𝐾 classes. For the k-th class, we treat the
training samples that belong to this class as positive samples
and all the remaining samples as negative samples. Then the k-
th classifier is trained based on the following equation provided
in [24],

 𝑤𝑤�𝑘𝑘 = arg min 𝐶𝐶𝑝𝑝 ∑𝑁𝑁 1

𝑖𝑖 =1 𝑙𝑙2(𝑦𝑦𝑖𝑖𝑤𝑤𝑇𝑇
𝑘𝑘 𝑥𝑥𝑖𝑖) + ‖𝑤𝑤 2

𝑘𝑘‖ , (2)
𝑤𝑤𝑘𝑘∈𝑅𝑅𝑑𝑑

2

where 𝑙𝑙2(z) is given by 𝑙𝑙2(𝑧𝑧) = max(0,1 − 𝑧𝑧)2 , 𝑤𝑤�𝑘𝑘 are learned
weights for the 𝑘𝑘-th classifier, 𝐶𝐶𝑝𝑝 is a real-valued regularization
parameter, and (𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖) is the i-th instance-label pair. We use 𝑙𝑙2
loss instead of hinge-loss to make the training more efficient
since the gradient of 𝑙𝑙2 loss is continuous. For simplification
purposes, we use ‖∙‖ without subscript to denote the 𝑙𝑙2 norm
‖∙‖2 . The final SVM classification result can thus be
determined by the following equation,

 𝑘𝑘� = arg max (𝑤𝑤�𝑇𝑇𝑘𝑘 𝑥𝑥𝑖𝑖),

𝑘𝑘∈{1,2,…,𝐾𝐾}
(3)

where 𝑤𝑤�𝑇𝑇𝑘𝑘 𝑥𝑥𝑖𝑖 is the prediction of the testing sample 𝑥𝑥𝑖𝑖
corresponding to the k-th class.

B. Uncertainty Measure Design
In active learning, uncertainty sampling aims to choose the

most uncertain samples from the unlabeled data pool to label.

4

Fig. 2. Overview of the sparse modeling for sample selection. (a): Uncertainty scores for feature points in 2-D space. The color from black to red represents the
uncertainty score from low to high. (b): Uncertainty scores are represented in z-axis. (c): Use combination of selected Gaussian kernels to represent the uncertainty
scores. 𝑓𝑓 is a sparse vector in which only the indices o f selected samples have non-zero values. 𝑄𝑄 is a collection of Gaussian kernels of all feature points. (d):
Representation error with selected Gaussian kernels.

For SVM based classifier, it is common to use the distance
between the first two most likely predictions. Similar to [10,11],
we define the uncertainty score based on the “best vs. the
second best” (BvSB) strategy,

 𝑠𝑠 𝑇𝑇 𝑇𝑇
BvSB(𝑥𝑥𝑖𝑖) = max (𝑤𝑤�𝑘𝑘2𝑥𝑥𝑖𝑖 − 𝑤𝑤�𝑘𝑘1𝑥𝑥𝑖𝑖 + 1, 0), (4)

where 𝑘𝑘1 and 𝑘𝑘2 are the first two most likely predicted classes.
We take max(∙) operation to restrict the uncertainty score in the
range of [0, 1].

C. Sample Selection via Sparse Modeling
Given uncertainty scores generated from the classifiers, we

would like to select the most informative samples for a query.
The simplest selection strategy is that we always select the
samples up to the batch size, 𝐵𝐵𝑞𝑞 , with the highest uncertainty
scores. However, this strategy ignores the relations among the
pooled unlabeled samples. Sometimes the samples with top
uncertainty are very similar to each other. We should avoid
selecting samples with redundant information in the same
batch.

To achieve this goal, we can formulate the problem via sparse
representation as shown in Fig. 2. In other words, we want to
select a few samples that can cover the information of the pool
data as much as possible. To be specific, we propose the
following formulation to modify the uncertainty scores before
sample selection,

𝑓𝑓 = arg min‖𝑄𝑄𝑓𝑓 − 𝑠𝑠‖2 ,

𝑓𝑓

 𝑠𝑠. 𝑡𝑡. ‖𝑓𝑓‖0 = 𝐵𝐵𝑞𝑞 , 𝟎𝟎 ≤ 𝑓𝑓 ≤ 𝟏𝟏,
(5)

where 𝑠𝑠 is the original uncertainty score, 𝑓𝑓 is the modified
uncertainty score, ‖𝑓𝑓‖0 = card(𝑓𝑓) represents the number of
non-zeros entries, 𝟎𝟎 and 𝟏𝟏 are all-zero vector and all-one
vector, respectively, 𝐵𝐵𝑞𝑞 is the batch size and 𝑄𝑄 is the s imilarity
matrix among all the unlabeled samples. Specifically, 𝑄𝑄𝑖𝑖,𝑗𝑗
represents the similarity between samples 𝑖𝑖 and 𝑗𝑗 in the range
of [0, 1]. The similarity can be measured in different ways

[56,58]. One common method of designing similarity matrix 𝑄𝑄
is using the Gaussian kernel of two points, i.e.,

2𝑥𝑥 −𝑥𝑥

� �

𝑄𝑄 , = exp �− 𝑖𝑖 𝑗𝑗
𝑖𝑖 𝑗𝑗 2 �.

𝜎𝜎

(6)

However, when dealing with high-dimensional data points,
which are commonly very sparse, the Euclidean distance might
not be a good choice to represent the similarity. To better
represent the similarity between two samples, we define the
matrix 𝑄𝑄 as

2 �𝑥𝑥� −𝑥𝑥� �
exp �− 𝑖𝑖 𝑗𝑗 � , if 𝑖𝑖 ∈ 𝑁𝑁 ,

 𝑄𝑄 2 𝜎𝜎 𝑗𝑗
𝑖𝑖,𝑗𝑗 = �

0, if 𝑖𝑖 ∉ 𝑁𝑁𝑗𝑗 ,
(7)

 𝑥𝑥� = [𝑤𝑤�1, 𝑤𝑤� 𝑇𝑇
2, … , 𝑤𝑤�𝐾𝐾] 𝑥𝑥,

(8)

where 𝑥𝑥�𝑖𝑖 and 𝑥𝑥�𝑗𝑗 are transformed data samples of the initial data
𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 , 𝑁𝑁𝑗𝑗 is the neighbor index set of the j-th sample. Here
we use the learned weights of SVM classifiers as the data
transform.

Assume there are 𝑁𝑁𝑈𝑈 unlabeled samples. To better illustrate
the formulation in Eq. (5), we can write matrix 𝑄𝑄 as 𝑄𝑄 =
�𝑞𝑞1, 𝑞𝑞2, … , 𝑞𝑞𝑁𝑁𝑈𝑈� and each column vector 𝑞𝑞𝑗𝑗 denotes the
similarity weights between the j-th sample and all unlabeled
samples via the Gaussian kernel. In this formulation, we are
interested in looking for a sparse linear combination of the
similarity weight vectors centered at selected samples, i.e., 𝑄𝑄𝑓𝑓,
to represent the original uncertainty scores 𝑠𝑠. After the problem
is solved, the indices of non-zero entries in 𝑓𝑓 would be the
indices of our selected samples.

D. Approximated Solution 1: Greedy Search
The solution to the problem in Eq. (5) can be well

approximated using greedy search method, i.e., we can select
samples one-by-one and modify the uncertainty scores after

each selection. Note that this greedy search method still follows
the batch mode setting since there is no need to update the
classifier after each sequential selection. We denote the
similarity matrix 𝑄𝑄 as 𝑄𝑄 = �𝑞𝑞1, 𝑞𝑞2, … , 𝑞𝑞𝑁𝑁𝑈𝑈� , where each
column vector 𝑞𝑞𝑗𝑗 in 𝑄𝑄 represents Gaussian kernel weights
centered at the location of 𝑥𝑥�𝑗𝑗 . For the t-th selection from 1 to
𝐵𝐵𝑞𝑞, the selection strategy is as follows,

 � 2𝑘𝑘 𝑡𝑡 , 𝑓𝑓𝑘𝑘� 𝑡𝑡 = arg min �𝑓𝑓 𝑡𝑡
𝑗𝑗𝑞𝑞𝑗𝑗 − 𝑠𝑠 � ,

𝑗𝑗∈𝑈𝑈,𝑓𝑓𝑗𝑗

(9)

where 𝑠𝑠𝑡𝑡 is a vector of uncertainty scores of all unlabeled
samples at time 𝑡𝑡, 𝑓𝑓𝑗𝑗 is a scalar which represents the modified
uncertainty s core of the 𝑗𝑗 -th sample, 𝑈𝑈 is the index set of
unlabeled data, 𝑘𝑘�𝑡𝑡 is the index of selected sample and 𝑓𝑓𝑘𝑘� 𝑡𝑡 is the
modified uncertainty score for the selected sample.

This can be solved by sequentially obtaining 𝑘𝑘� 𝑡𝑡 and 𝑓𝑓𝑘𝑘� 𝑡𝑡
using

 𝑘𝑘� 𝑡𝑡 = arg max 𝑞𝑞𝑇𝑇𝑗𝑗 𝑠𝑠𝑡𝑡 ,

𝑗𝑗∈𝑈𝑈

(10)
 𝑓𝑓 2= arg min�𝑓𝑓 𝑞𝑞 − 𝑠𝑠𝑡𝑡𝑘𝑘� 𝑡𝑡 𝑘𝑘� 𝑡𝑡 𝑘𝑘� 𝑡𝑡 � .

𝑓𝑓𝑘𝑘�𝑡𝑡

(11)

In Eq. (10), the sample with the maximum correlation between
the Gaussian kernel 𝑞𝑞𝑗𝑗 and uncertainty score 𝑠𝑠 is selected. Then
the modified uncertainty of the selected sample is calculated
from Eq. (11).

After each selection, the remaining uncertainty is calculated
from

 𝑠𝑠𝑡𝑡+1 = max (𝑠𝑠𝑡𝑡 − 𝑓𝑓𝑘𝑘� 𝑡𝑡𝑞𝑞𝑘𝑘� 𝑡𝑡 , 0).

(12)

For each iteration, we keep the uncertainty score 𝑠𝑠𝑡𝑡+1 to be
non-negative. Then we move 𝑘𝑘�𝑡𝑡 from the unlabeled set 𝑈𝑈 to the
labeled set 𝐿𝐿 . This greedy search method is similar to
orthogonal matching pursuit (OMP) [33], except that we only
keep non-negative values for residuals in Eq. (12). The
approach is summarized in Algorithm 1. We name this method
as sparse modeling by greedy search (SMGS).
__
Algorithm 1: SMGS__________ ___________________

Input: original uncertainty score 𝑠𝑠, similarity matrix 𝑄𝑄,
labeled set 𝐿𝐿, unlabeled set 𝑈𝑈.
Initialization: Set 𝑠𝑠1 = 𝑠𝑠.
for 𝑡𝑡 = 1: 𝐵𝐵𝑞𝑞 do

Choose 𝑘𝑘� 𝑡𝑡 = arg max 𝑞𝑞𝑇𝑇𝑗𝑗 𝑠𝑠𝑡𝑡 from 𝑈𝑈 for a query.
𝑗𝑗∈𝑈𝑈

 Compute 𝑓𝑓𝑘𝑘� 𝑡𝑡 by

2𝑓𝑓𝑘𝑘� 𝑡𝑡 = arg min�𝑓𝑓 𝑡𝑡
𝑘𝑘� 𝑡𝑡𝑞𝑞𝑘𝑘� 𝑡𝑡 − 𝑠𝑠 � .

𝑓𝑓𝑘𝑘�𝑡𝑡

Update the uncertainty scores of the next iteration
using

 𝑠𝑠𝑡𝑡+1 = max(𝑠𝑠𝑡𝑡 − 𝑓𝑓𝑘𝑘� 𝑡𝑡𝑞𝑞𝑘𝑘� 𝑡𝑡 , 0).
 Move sample index 𝑘𝑘�𝑡𝑡 from 𝑈𝑈 to 𝐿𝐿.

end for
 Output: updated labeled set 𝐿𝐿.
__

Although the sparse modeling problem can be approximated

using Algorithm 1, there are still three major drawbacks of the
formulation in Eq. (5): 1) the sparse representation is sensitive
to the samples with low uncertainty scores; 2) the uncertainty,
diversity and density are not well combined in the formulation;
3) optimal solution is not guaranteed using greedy search
method. We will illustrate how we can overcome these
drawbacks in the following section.

IV. COMBINE UNCERTAINTY, DIVERSITY AND DENSITY WITH
𝑙𝑙1 APPROXIMATION

Sparse modeling is a good way to incorporate diversity and
density in the sample selection. However, it is sensitive to the
samples with low uncertainty scores. A pre-processing step, i.e.,
selective sampling, can address this problem before sparse
modeling. In addition to diversity and density, we still need to
focus on high uncertainty samples. Hence, a trade-off among
diversity, density and uncertainty cannot be avoided. Moreover,
an efficient approximation is needed for solving the sparse
problem with 𝑙𝑙0 norm. In this section, selective sampling,
modification of the sparse modeling and an efficient
optimization approach are proposed.

A. Selective Sampling for Sparse Modeling
For multi-class classification problems, there is often the case

that samples with high similarity may have a large difference in
the uncertainty. This situation results from the non-robust
classifier due to the limited training data. Therefore, the
neighboring samples for a given selected sample may have
large difference in the uncertainty. Once we apply a Gaussian
similarity kernel on a given sample, the samples with high
uncertainty cannot be well represented by the kernel if several
low uncertainty samples are around. This is because the loss
function defined in Eq. (5) is to minimize the representation
error of all samples including low uncertainty samples as
illustrated in the example given in Fig. 3. From the top-right
figure of Fig. 3, we can see that low uncertainty samples can
have a large effect on the representation error. With the
selective sampling strategy adopted in bottom-left of Fig. 3, the
 s a m p l e s w i t h low uncertainty are filtered out before the sparse
modeling, resulting in lower representation errors as shown in
bottom-right of Fig. 3.

To implement this selective sampling strategy shown in Fig.
3, we design a locality thresholding method to select high
uncertainty samples among neighboring samples. Given an
unlabeled sample 𝑗𝑗 , we compare it with its neighboring
unlabeled samples 𝑖𝑖 ∈ 𝑁𝑁𝑗𝑗 . We define the uncertainty influence,
𝐼𝐼𝑖𝑖,𝑗𝑗 , as a weighted uncertainty s core from the sample 𝑖𝑖 to the
sample 𝑗𝑗, i.e., 𝐼𝐼𝑖𝑖,𝑗𝑗 = 𝑄𝑄𝑖𝑖,𝑗𝑗𝑠𝑠𝑖𝑖 . If 𝐼𝐼𝑖𝑖,𝑗𝑗 has a much higher value than
𝑠𝑠𝑗𝑗, we should not select the sample 𝑗𝑗 since it has a much lower

5

6

uncertainty than its neighboring samples. Let’s define the
influence difference 𝑑𝑑𝑗𝑗 as,

𝑑𝑑𝑗𝑗 = max 𝐼𝐼𝑖𝑖,𝑗𝑗 − 𝑠𝑠𝑗𝑗 𝑖𝑖∈𝑁𝑁𝑗𝑗

= max𝑄𝑄𝑖𝑖,𝑗𝑗𝑠𝑠𝑖𝑖 − 𝑠𝑠𝑗𝑗 . (13)
𝑖𝑖∈𝑁𝑁𝑗𝑗

diversity in the sample selection, where 𝐴𝐴 = 𝑄𝑄𝑇𝑇𝑄𝑄 is a positive
semi-definite matrix with 𝐴𝐴𝑖𝑖,𝑗𝑗 measuring the similarity between
samples 𝑖𝑖 and 𝑗𝑗. We can see that if 𝐴𝐴𝑖𝑖,𝑗𝑗 has a high value and
both 𝑖𝑖 and 𝑗𝑗 have been selected, then 𝑓𝑓𝑖𝑖𝐴𝐴𝑖𝑖,𝑗𝑗𝑓𝑓𝑗𝑗 would have a very
high value, which leads to a heavy penalty on the loss function.
As a result, this term guarantees that samples with high
similarities cannot be selected at the same time, i.e., diverse

Fig. 3. An example of selective sampling. The first row shows the sparse modeling without selective sampling, which results in high representation error. The
second row shows the effectiveness with selective sampling before sparse modeling, which can largely reduce the representation error.

To be s pecific, the samples with 𝑑𝑑𝑗𝑗 > 𝑑𝑑thresh are filtered out,
where 𝑑𝑑thresh is a pre-defined threshold. In other w ords, we
select samples with the uncertainty scores that are not much
lower than the uncertainty of the neighboring samples. We
denote the index set of selected samples as 𝑆𝑆𝑈𝑈 . Note that this
pre-selection step filters out samples in their local neighbors
instead of using a global threshold, which is more suitable for
sparse representation.

There are two advantages of this selective sampling strategy.
On one side, the sparse representation is no longer influenced
by low uncertainty samples. On t he other side, the number of
candidate samples is largely reduced, which also reduces the
complexity in the optimization.

B. Combine Diversity, Density and Uncertainty
In this subsection, we will demonstrate how we combine

diversity, density and uncertainty by modified sparse modeling.
After selective sampling, we only focus on a subset of the
unlabeled samples, i.e., 𝑆𝑆𝑈𝑈 = {𝑘𝑘1, 𝑘𝑘2, … , 𝑘𝑘𝑚𝑚 } with 𝑚𝑚 =
card(𝑆𝑆𝑈𝑈). Hence, we modify the variables in Eq. (5) with 𝑠𝑠 =
[𝑠𝑠 , 𝑠𝑠 𝑇𝑇
𝑘𝑘1 , 𝑠𝑠𝑘𝑘2

, …
𝑘𝑘

 and 𝑄𝑄 𝑚𝑚] = �𝑞𝑞𝑘𝑘1 , 𝑞𝑞𝑘𝑘2 , … , 𝑞𝑞𝑘𝑘𝑚𝑚� . Moreover, we
rewrite Eq. (5) as,

 𝑓𝑓 = arg min‖𝑄𝑄𝑓𝑓 − 𝑠𝑠‖2 ,

𝑓𝑓

 = arg min 1 𝑓𝑓𝑇𝑇𝑄𝑄𝑇𝑇𝑄𝑄𝑓𝑓 − 𝑓𝑓𝑇𝑇𝑄𝑄𝑇𝑇𝑠𝑠
𝑓𝑓 2

 𝑠𝑠. 𝑡𝑡. ‖𝑓𝑓‖0 = 𝐵𝐵𝑞𝑞 , 𝟎𝟎 ≤ 𝑓𝑓 ≤ 𝟏𝟏.
(14)

We analyze the above formulation in three aspects as follows.

(1) Diverse term. The first term 1 𝑓𝑓𝑇𝑇𝑄𝑄𝑇𝑇𝑄𝑄𝑓𝑓 measures the
2

samples are encouraged to be selected.
(2) Density term. The second term, −𝑓𝑓𝑇𝑇𝑄𝑄𝑇𝑇𝑠𝑠, measures the

density in the sample selection. We can treat (𝑄𝑄𝑓𝑓)𝑇𝑇𝑠𝑠 as a
correlation between a combination of selected Gaussian kernels
and the uncertainty scores 𝑠𝑠 . If we have a large density of
samples around selected samples, then there would be a high
correlation between 𝑄𝑄𝑓𝑓 and 𝑠𝑠. Therefore, there is only a small
penalty on the loss function.

(3) Uncertainty trade-off. To emphasize high uncertainty
samples, an uncertainty term, −𝑓𝑓𝑇𝑇𝑠𝑠, can be added to strengthen
the role of uncertainty in the sample selection as shown in Eq.
(15).

We can relax the density term and uncertainty term with
penalty parameters 𝜆𝜆1 and 𝜆𝜆2, so that the modified formulation
of the sparse modeling becomes,

1

𝑓𝑓 = arg min 𝑓𝑓𝑇𝑇𝑄𝑄𝑇𝑇𝑄𝑄𝑓𝑓 − 𝜆𝜆1𝑓𝑓𝑇𝑇𝑄𝑄𝑇𝑇𝑠𝑠 − 𝜆𝜆2𝑓𝑓𝑇𝑇𝑠𝑠,
𝑓𝑓 2

1
= arg min 𝑓𝑓𝑇𝑇𝑄𝑄𝑇𝑇𝑄𝑄𝑓𝑓 − 𝑓𝑓𝑇𝑇(𝜆𝜆1𝑄𝑄𝑇𝑇 + 𝜆𝜆2𝐼𝐼)𝑠𝑠,

𝑓𝑓 2
 𝑠𝑠. 𝑡𝑡. ‖𝑓𝑓‖0 = 𝐵𝐵𝑞𝑞 , 𝟎𝟎 ≤ 𝑓𝑓 ≤ 𝟏𝟏.

(15)

To better demonstrate the difference between Eq. (15) and Eq.
(1) [13], we make some detailed analyses as follows.
 Density analysis. Eq. (1) in [13] does not use the density

term of Eq. (15), −𝑓𝑓𝑇𝑇𝑄𝑄𝑇𝑇𝑠𝑠. As a result, isolated distinct
samples are encouraged to be selected in Eq. (1). This is
because isolated samples are dissimilar to other samples,
therefore Eq. (1) will generate a small penalty on the
diverse term. However, since isolated samples are far
away from the data density, these samples are

“unimportant” or outliers. Selecting such samples is not
very helpful for the classifier to improve the performance.

 Sparsity analysis. Eq. (15) is derived from sparse
representation with only selected samples being
considered in the linear combination. As a result, the
number of batch size, 𝐵𝐵𝑞𝑞 , is incorporated in our
formulation. In other words, the optimal solution is
determined with 𝐵𝐵𝑞𝑞 as a hyper-parameter. Different from
the proposed method, Eq. (1) is not derived from sparse
modeling and therefore the sparsity in their formulation is
never analyzed. Besides, they do not incorporate the batch
size in their optimization.

 Efficiency analysis. In our formulation, we construct
matrix 𝑄𝑄 with only k-nearest neighbors, as illustrated in
Eq. (7). As a result, this setting makes the quadratic matrix
𝑄𝑄𝑇𝑇𝑄𝑄 become a sparse matrix, which leads to efficient
optimization [52]. Moreover, the selective sampling step
can also largely reduce the searching space. On the
contrary, the k-nearest neighbors strategy cannot be easily
adopted in matrix 𝐾𝐾 of Eq. (1). This is because this setting
will make 𝐾𝐾 become a nonsymmetric matrix. Therefore,
the convexity of the formulation will no longer hold,
which only results in local minimum solution.

C. Approximated Solution 2: QP via 𝑙𝑙1 Norm Relaxation
We are interested in the sparse solution of Eq. (15), which is

NP-hard since there is an 𝑙𝑙0 -norm constraint. If we have
card(𝑆𝑆𝑈𝑈) pre-selected unlabeled samples, then we should try

card(𝑆𝑆𝑈𝑈)� � combinations to select the optimal 𝐵𝐵𝑞𝑞 samples for 𝐵𝐵𝑞𝑞

a query, which is not practical. Therefore, an approximated
solution is proposed via 𝑙𝑙1-norm relaxation, i.e., we can relax
‖𝑓𝑓‖0 to ‖𝑓𝑓‖1. As a result, the problem becomes

1

𝑓𝑓 = arg min 𝑓𝑓𝑇𝑇𝑄𝑄𝑇𝑇𝑄𝑄𝑓𝑓 − 𝑓𝑓𝑇𝑇(𝜆𝜆 𝜆𝜆
𝑓𝑓 2 1𝑄𝑄𝑇𝑇 + 2𝐼𝐼)𝑠𝑠,

 𝑠𝑠. 𝑡𝑡. ‖𝑓𝑓‖1 = 𝐵𝐵𝑞𝑞 , 𝟎𝟎 ≤ 𝑓𝑓 ≤ 𝟏𝟏.
(16)

It is equivalent to

1

𝑓𝑓 = arg min 𝑓𝑓𝑇𝑇𝑄𝑄𝑇𝑇𝑄𝑄𝑓𝑓 − 𝑓𝑓𝑇𝑇(𝜆𝜆 𝑇𝑇
1𝑄𝑄 + 𝜆𝜆2𝐼𝐼)𝑠𝑠,

𝑓𝑓 2
 𝑠𝑠. 𝑡𝑡. 𝟏𝟏𝑇𝑇𝑓𝑓 = 𝐵𝐵𝑞𝑞 , 𝐶𝐶𝑓𝑓 ≤ 𝑑𝑑,

(17)

where 𝐶𝐶 = [−𝐼𝐼, 𝐼𝐼]𝑇𝑇 , 𝑑𝑑 = [𝟎𝟎𝑇𝑇 , 𝟏𝟏𝑇𝑇]𝑇𝑇 and 𝐼𝐼 is the identity matrix.
Here, we convert the lower and upper bounds of 𝑓𝑓 to be linear
inequality constraints. Moreover, 𝟏𝟏𝑇𝑇𝑓𝑓 = 𝐵𝐵𝑞𝑞 is equivalent to
‖𝑓𝑓‖1 = 𝐵𝐵𝑞𝑞 because entries in 𝑓𝑓 are all non-negative values.
Hence, the formulation becomes a standard quadratic
programming (QP) p roblem, which can now be solved by the
interior-point method [39,40]. First, we form the Lagrangian
function for the above problem, i.e.,

 7

1
𝐿𝐿(𝑓𝑓, 𝑦𝑦, 𝑧𝑧) = 𝑓𝑓𝑇𝑇𝑄𝑄𝑇𝑇𝑄𝑄𝑓𝑓 − 𝑓𝑓𝑇𝑇(𝜆𝜆 𝑄𝑄𝑇𝑇 + 𝜆𝜆 𝐼𝐼)𝑠𝑠

2 1 2

−𝑦𝑦�𝟏𝟏𝑇𝑇𝑓𝑓 − 𝐵𝐵 𝑇𝑇
𝑞𝑞� − 𝑧𝑧 (𝐶𝐶𝑓𝑓 − 𝑑𝑑), (18)

where 𝑦𝑦 and 𝑧𝑧 are the vectors of Lagrange multipliers. Then
the Karush-Kuhn-Tucker (KKT) conditions [55] can be stated
as follows,

𝑄𝑄𝑇𝑇𝑄𝑄𝑓𝑓 − (𝜆𝜆 𝑄𝑄𝑇𝑇 + 𝜆𝜆)𝑠𝑠 − 𝑦𝑦𝟏𝟏 − 𝐶𝐶𝑇𝑇1 2𝐼𝐼 𝑧𝑧 = 0,
𝐶𝐶𝑓𝑓 − 𝑑𝑑 + 𝜏𝜏 = 0,
𝟏𝟏𝑇𝑇𝑓𝑓 − 𝐵𝐵𝑞𝑞 = 0,
𝑧𝑧𝑖𝑖𝜏𝜏𝑖𝑖 = 0, 𝑖𝑖 = 1,2, . . . , 𝑚𝑚,
𝜏𝜏 ≥ 𝟎𝟎,
𝑧𝑧 ≥ 𝟎𝟎,

(19)

where 𝜏𝜏 is the slack vector that converts inequality constraints
to equalities. Then we define the residuals as follows,

𝑟𝑟𝑑𝑑 = 𝑄𝑄𝑇𝑇𝑄𝑄𝑓𝑓 − (𝜆𝜆 𝑄𝑄𝑇𝑇 + 𝜆𝜆2𝐼𝐼 𝟏𝟏 𝐶𝐶𝑇𝑇1)𝑠𝑠 − 𝑦𝑦 − 𝑧𝑧,
𝑟𝑟𝑒𝑒𝑞𝑞 = 𝟏𝟏𝑇𝑇𝑓𝑓 − 𝐵𝐵𝑞𝑞 ,
𝑟𝑟𝑖𝑖𝑛𝑛𝑒𝑒𝑞𝑞 = 𝐶𝐶𝑓𝑓 − 𝑑𝑑 + 𝜏𝜏,
𝑟𝑟𝜏𝜏𝜏𝜏 = 𝛤𝛤𝑧𝑧,

(20)

where 𝛤𝛤 is the diagonal matrix of 𝜏𝜏 . In a Newton step, the
changes in x, 𝜏𝜏, y, and z, are given by,

𝑄𝑄𝑇𝑇𝑄𝑄 𝟎𝟎 −𝟏𝟏 −𝐶𝐶𝑇𝑇 ∆𝑓𝑓 𝑟𝑟𝑑𝑑

𝟏𝟏𝑇𝑇 𝟎𝟎 𝟎𝟎 𝟎𝟎 ∆𝜏𝜏 𝑟𝑟
� �� � � 𝑒𝑒𝑞𝑞 = − �, (21)
𝐶𝐶 𝐼𝐼 𝟎𝟎 𝟎𝟎 ∆𝑦𝑦 𝑟𝑟𝑖𝑖𝑛𝑛𝑒𝑒𝑞𝑞

𝟎𝟎 𝑍𝑍 𝟎𝟎 𝛤𝛤 ∆𝑧𝑧 𝑟𝑟𝜏𝜏𝜏𝜏

where 𝑍𝑍 is the diagonal matrix of z. We update 𝑓𝑓𝑡𝑡+1 = 𝑓𝑓𝑡𝑡 + ∆𝑓𝑓
for each iteration until convergence. Additionally, if a full
Newton step is infeasible, we shorten the step to maintain
positivity.

However, the number of non-zero entries in 𝑓𝑓 is not
constrained with 𝑙𝑙1 -norm. Since we restrict 𝑓𝑓 to [0, 1], the
solution will give us more than 𝐵𝐵𝑞𝑞 non-zero entries. Besides
that, since we are only interested in the first 𝐵𝐵𝑞𝑞 samples, we do
not want non-selected samples to influence the solution. As a
result, we modify the formulation by introducing a parameter 𝜆𝜆
in the constraint, i.e.,

 𝑓𝑓 = arg min 1 𝑓𝑓𝑇𝑇𝑄𝑄𝑇𝑇𝑄𝑄𝑓𝑓 − 𝑓𝑓𝑇𝑇(𝜆𝜆1𝑄𝑄𝑇𝑇 + 𝜆𝜆2𝐼𝐼)𝑠𝑠,

𝑓𝑓 2

 𝑠𝑠. 𝑡𝑡. , 𝟏𝟏𝑇𝑇𝑓𝑓 = 𝜆𝜆𝐵𝐵𝑞𝑞 , 𝐶𝐶𝑓𝑓 ≤ 𝑑𝑑,
(22)

where we choose 𝜆𝜆 between 0 and 1. Decreasing 𝜆𝜆 will
generate less non-zero entries in the solution. We can adjust 𝜆𝜆
so that the solution only contains 𝐵𝐵𝑞𝑞 non-zero entries. This
problem can be solved by using a simple bisection algorithm to
iteratively search the proper 𝜆𝜆, which is illustrated in Algorithm
2. We name this method as sparse modeling via quadratic

programming (SMQP), which uses quadratic programming to
solve the sparse modeling problem. Usually, the optimal
solution will be achieved in no more than 10 iterations from our
simulations.
__
Algorithm 2: SMQP ______________

Input: original uncertainty score 𝑠𝑠, similarity matrix 𝑄𝑄,
labeled set 𝐿𝐿, pre-selected unlabeled set 𝑆𝑆𝑈𝑈 .
Initialization: Set 𝜆𝜆 = 0.5, 𝑙𝑙𝑙𝑙 = 0, 𝑢𝑢𝑙𝑙 = 1.
Solve 𝑓𝑓 by Eq. (22).
while �𝑓𝑓� ≠ 𝐵𝐵𝑞𝑞0

 do
if �𝑓𝑓� > 𝐵𝐵𝑞𝑞0

 do
 𝑢𝑢𝑙𝑙 = 𝜆𝜆.
 else
 𝑙𝑙𝑙𝑙 = 𝜆𝜆.

end if
𝜆𝜆 = (𝑙𝑙𝑙𝑙 + 𝑢𝑢𝑙𝑙)/2.
Solve 𝑓𝑓 by Eq. (22).

end while
Sort 𝑓𝑓 in descending order and move the first 𝐵𝐵𝑞𝑞 indices of
𝑓𝑓 from 𝑆𝑆𝑈𝑈 to 𝐿𝐿.
Output: updated labeled set 𝐿𝐿.

__

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experiment Setup
We evaluate our proposed method for classification

problems on four image datasets, which are COIL-20 [25], a
subset of MNIST [27], Cam-Trawl Fish [28] and Chute Fish
[29]. The information of the datasets is described in TABLE I.

TABLE I
DATASET DESCRIPTION

Name # of samples # of class
 COIL-20 1440 20

 MNIST (subset) 3000 10
 Cam-Trawl Fish 1026 5

 Chute Fish 5032 27

8

For each dataset, we split the data into 4 parts: seed set
(labeled set), unlabeled set, validation set and testing set,
denoted as 𝐿𝐿, 𝑈𝑈, 𝑉𝑉, 𝑇𝑇, respectively. 𝐿𝐿 is used for training the
initial classifiers; 𝑈𝑈 is treated as a data pool for sample
selection; 𝑉𝑉 is used for parameter tuning; and 𝑇𝑇 is used for
evaluating the performance of the re-trained classifiers. For
each dataset, we split the data as follows: in each class, 3
samples are used as the seed set; half of the samples are used as
unlabeled data; o ne quarter of samples are used as the validation
set and the remaining samples are used as the testing set. During
each experiment, the data is split randomly.

For each dataset, two different types of feature extraction
methods are adopted. One is based on the traditional extraction
method and the other is convolutional neural networks (CNNs)
based [60]. For the traditional extraction method, we resize and
concatenate each sample image into one feature vector in
dataset COIL-20 and MNIST, named as “concat” in TABLE II;

while for Cam-Trawl Fish and Chute Fish datasets, we follow
the bag-of-features (BoF) framework [26,31] based on two
level codebook learning [30]. For the CNN based feature
extraction method, we use the output of pre-logits layer of
inception-resnet-v2 [51] as the feature vector in dataset COIL-

 2 0, Ca m - Tr a w l F ish and Chute Fish; while for MNIST dataset,
we a dopt the architecture of two convolutional layers followed
by two fully connected layers in Tensorflow official site [54].
Before extracting CNN features, we use transfer learning on
each dataset to achieve better feature representation. The
feature space used for the four datasets is summarized in TABLE
II.

Eight evaluation methods are used in the experiments: 1)
BvSB [11], which chooses the 𝐵𝐵𝑞𝑞 samples based on top highest
uncertainty scores; 2) RAND, which randomly selects 𝐵𝐵𝑞𝑞
samples for a query; 3) SMGS, which is the proposed
approximated approach using sparse modeling via greedy
search; 4) VS [12], which incorporates diversity for a query via
version space reduction; 5) USDM [13], which is uncertainty
sampling based active learning with diversity maximization; 6)
SMQP, which is the proposed approximated approach using
sparse modeling via quadratic programming; 7) MMC [49],
which is active learning with maximum model change; 8) EER
[50], which is active learning with expected error reduction.

For the parameter settings, we fix the cost 𝐶𝐶𝑝𝑝 = 1 in the
SVM for all experiments. Also, w e fix 𝑑𝑑thresh = 0.2 in the
selective sampling step for the sparse modeling. We also set
𝜆𝜆1 = 1 in the refinement of sparse modeling fixed. Other
parameters are empirically tuned according to the performance
in the validation set 𝑉𝑉. We tune the standard deviation 𝜎𝜎 of the
similarity matrix 𝑄𝑄 from {0.25, 0.5, 1, 2}, 𝜆𝜆2 in the refinement
of sparse modeling from {0.1,1,5,10} and the number of
neighbors card(𝑁𝑁𝑗𝑗) of 𝑄𝑄 from {5,10,20}.

TABLE II
FEATURE DESCRIPTION

Name Feature size
 COIL-20 (concat) 1024

 COIL-20 (CNN) 1536
 MNIST (concat) 784

 MNIST (CNN) 1024
 Cam-Trawl Fish (BoF) 7168
 Cam-Trawl Fish (CNN) 1536

 Chute Fish (BoF) 7168
 Chute Fish (CNN) 1536

B. Performance Comparison with Different Batch Sizes
We run the algorithms with different batch sizes from 15 to

105 with 15 increments for each experiment and report the
average accuracy for all the eight methods. We set the s eed size
𝑐𝑐 = 3 in this experiment. Each result is based on an average of
10 runs of the same setting. Figure 4 compares the performance
of eight active learning algorithms for image classification on
four datasets. Generally, SMQP and SMGS outperform other
methods. To be specific, SMQP gives robust results on different
batch size and SMGS also gives promising results. However,
since no optimal solution is guaranteed in SMGS, in a few cases

 SMQP classifier
Correct Wrong

 USDM
 classifier

Correct 𝑎𝑎1 𝑎𝑎2
 Wrong 𝑎𝑎3 𝑎𝑎4

(a) COIL-20 (b) MNIST

(c) Cam-Trawl Fish (d) Chute Fish

9

Fig. 4. Average accuracy with seed size 𝑐𝑐 = 3 on four datasets using traditional features.

the accuracy of SMGS is slightly lower than BvSB method,
particularly for Chute Fish dataset when the batch size is over
75. For MMC and EER methods, although they are optimized
for sequential sample selection, they are not taking advantage
of the unlabeled pool data for batch mode settings. We can see
in MNIST dataset, they perform even worse than RAND. This
is because the sequentially selected samples in MMC and EER
have much redundant information which gives little
information for re-training the classifiers than random
selection. As for VS method, it also incorporates diversity in the
experiment design and use version space reduction to deal with
binary problem. However, the results show that there is no big
improvement than BvSB method. A possible reason is that
version space reduction may be not suitable for multi-class
problems. Generally, the performance of USDM is usually
much better with large batch size than with small batch size.
This is because USDM always tends to look for isolated distinct
samples at the first few selections, which has been discussed in
the previous sections.

C. Performance Comparison Using Different Features
In this subsection, we compare the performance of eight

TABLE III
CONTINGENCY TABLE FOR TWO CLASSIFIERS

active learning methods related to CNN based features. Figure
5 shows the experimental results on the four datasets. More
details about CNN feature representation can be found in
TABLE II. Since transfer learning is conducted on the dataset
before feature extraction, the classifiers are more robust with
the same size of seed set compared to using traditional features
in the previous subsection. This experiment demonstrates that
when a better feature is used, the performance of an active
learning algorithm usually improves. Same as before, SMQP
outperforms the other competitors consistently using different
features. When the batch size increases, the performances
saturate among several different methods with robust
classifiers.

D. Performance Comparison Using Different Seed Sizes
In this subsection, we examine the impact of the seed size by

changing 𝑐𝑐 = 9 on these four datasets. We keep other settings
unchanged and evaluate the performance with the batch sizes
varying from 15 t o 105. Both traditional features and CNN
features are used for complete comparison. The results are
shown in Fig. 6 and Fig. 7. From the results, we can see that the
proposed methods are consistently favorable, which further
indicates that leveraging the unlabeled pool data does help
improve the active learning performance.

E. Significance Test Analysis
Since USDM also incorporates diversity in the minimization,

we use paired sign test to verify whether SMQP has a
significant improvement over USDM. For each testing sample,

10

the outcome of the two classifiers have 4 possibilities: 1) both
USDM and SMQP make correct predictions; 2) USDM makes
a correct prediction while SMQP makes a wrong prediction; 3)
SMQP makes a correct prediction while USDM makes a wrong
prediction; 4) both USDM and SMQP make wrong predictions.
We use a 2×2 contingency table to tabulate the outcomes of two
classifiers on all testing samples, as follows.

The null hypothesis 𝐻𝐻0 is that these two classifiers are the
same while the alternate hypothesis 𝐻𝐻1 is that SMQP is better
than USDM. The p-value is defined as the probability that the
same as or more extreme cases than the actual observed results
occur, when the null hypothesis is true. A smaller p-value
means that SMQP classifier is more likely to be better than
USDM classifier. The p-value can be formulated as follows,

𝑝𝑝 = Pr(𝑋𝑋 ≥ 𝑎𝑎3) = 1 − Pr(𝑋𝑋 < 𝑎𝑎3)
𝑎𝑎3−1�𝑎𝑎2+𝑎𝑎3�0.5𝑖𝑖 (1 − 0.5)𝑎𝑎2+𝑎𝑎3−𝑖𝑖 = 1 − ∑ . (23) 𝑖𝑖=0 𝑖𝑖

https://en.wikipedia.org/wiki/Null_hypothesis
https://en.wikipedia.org/wiki/Null_hypothesis
https://en.wikipedia.org/wiki/Realization_(probability)

(a) COIL-20 (b) MNIST

(c) Cam-Trawl Fish (d) Chute Fish
Fig. 5. Average accuracy with seed size 𝑐𝑐 = 3 on four datasets using CNN features.

(a) COIL-20 (b) MNIST

 (c) Cam-Trawl Fish (d) Chute Fish
Fig. 6. Average accuracy with seed size 𝑐𝑐 = 9 on four datasets using traditional features.

11

(a) COIL-20 (b) MNIST

TABLE IV

12

(c) Cam-Trawl Fish (d) Chute Fish
Fig. 7. Average accuracy with seed size 𝑐𝑐 = 9 on four datasets using CNN features.

P-VALUES BETWEEN SMQP AND USDM FOR FOUR DATASETS WITH DIFFERENT BATCH SIZES

Bq 15 30 45 60 75 90 105
COIL-20 (c) 3.37E-11 4.55E-15 0 9.83E-12 4.64E-03 1.90E-02 2.87E-02
COIL-20 (3×c) 4.10E-04 2.31E-02 3.36E-02 8.13E-02 7.75E-02 6.40E-02 5.00E-01
MNIST (c) 7.23E-10 0 0 0 0 0 0
MNIST (3×c) 8.44E-09 3.44E-15 2.38E-12 7.77E-10 3.96E-08 1.18E-03 7.42E-02
Cam-Trawl Fish (c) 7.69E-05 2.69E-04 4.55E-02 8.23E-02 8.68E-02 9.75E-02 5.00E-02
Cam-Trawl Fish (3×c) 8.60E-03 1.10E-03 5.42E-03 5.39E-02 2.02E-02 5.63E-02 3.85E-02
Chute Fish (c) 0 0 0 0 0 0 1.11E-16
Chute Fish (3×c) 0 0 0 0 0 1.87E-08 1.51E-07

We report all p-values based on the sign test between USDM
and SMQP classifiers on four datasets using traditional features
in Table IV.

For SMQP method, the smaller the p-value is, the more
significant the improvement is over USDM method. From the
table, we can see that SMQP method has a significant
improvement over USDM method especially for small batch
size and seed number. With large batch size and seed number,
some p-values are relatively large. This is because the classifier
becomes more robust with the increase of the batch size and
seed number.

F. Performance Comparison of Data Transform in Similarity
Matrix

In this subsection, we examine the impact of the data
transform in the construction of similarity matrix in Eq. (8).
Taking BoF features on Cam-Trawl Fish dataset for example,

we report the average accuracy with seed size 𝑐𝑐 = 3 in Fig. 8.
The dashed line represents the result without data transform,
i.e., we use the original features with Euclidean distance to
construct the similarity in Eq. (7). On the contrary, the solid line
shows the result with the data transform using Eq. (8). As
expected, the result with data transform outperforms the one
without data transform. This is because the transformed data
can better describe the similarity relations among the samples.

Recently, the negativity of data is analyzed [63] and
simultaneously updated with the classifier since some negative
samples may look more like positive samples than others. As a
result, the negativity of samples is not equally weighted, which
can be used as a good way for measuring the similarity among
samples. This could be one direction about our future work.

G. Effectiveness with Selective Sampling
We take MNIST dataset as an example to show the

effectiveness with selective sampling. As shown in blue dashed

Fig. 8. The performance comparison with and without data transform.

13

curve in Fig. 9, the average accuracy drops slightly without
selective sampling. This is because the low uncertainty samples
may have negative impact on the sparse representation. The
most important effect of selective sampling is the ability of
reducing the computation time, which is shown in Fig. 10.

Fig. 9. The effectiveness of selective sampling in MNIST dataset using
concatenated features with 𝑐𝑐 = 3.

H. Computational Efficiency Comparison
Taking MNIST dataset as an example, we compare the

computational efficiency of the sample selection process of
nine methods which also includes SMQP without selective
sampling. In this experiment, we vary the unlabeled pool size
from 300 to 1500, with an interval of 300. All experiments are
implemented by Matlab R2017b, which is installed on a
machine with 4 core i7 and 32.0GB RAM.

Figure 10 shows the elapsed time to select 15 data for
labeling. We can see that except SMQP and USDM, the elapse
time remains flat with the increase of the pool size. The dashed
blue curve shows the elapsed time using SMQP without
selective sampling. Compared with USDM, SMQP without
selective sampling is computationally expensive since it also
searches the optimal 𝜆𝜆 in the optimization. As for SMQP, it
outperforms USDM in efficiency with the increase of pool size.

This is because SMQP adopts selective sampling strategy that
drops low uncertainty samples before the optimization.

Fig. 10. The elapsed time comparison.

VI. CONCLUSION AND FUTURE WORK

In this paper, a novel uncertainty sampling based active
learning algorithm is proposed via sparse modeling. An
approximated solution by greedy search method is achieved.
Moreover, uncertainty, diversity and density are combined in
the joint optimization after refinement of the sparse modeling.
To overcome the ineffectiveness of solving 𝑙𝑙0-norm constraint
of the sparse problem, a relaxation of 𝑙𝑙1-norm solution, SMQP,
is provided by quadratic programming. Comprehensive
experiments are conducted with regard to batch size, feature
space, seed size, significant analysis, data transform and
computational efficiency. There are two directions for future
work. On one side, we will look for more effective ways to
measure the similarity among samples, such as generating fine-
grained labels inspired from [63]. On the other side, we will
focus on the sample selection methods when facing large-scale
datasets.

REFERENCES

[1] Q. Zhao and D. J. Miller, “Mixture modeling with pairwise,
instancelevelclass constraints,” Neural Comput., vol. 17, no. 11, pp.
2482–2507, 2005.

[2] M. Guillaumin, J. Verbeek, and C. Schmid, “Multimodal semisupervised
learning for image classification,” in Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference on, 2010, pp. 902–909.

[3] Y. Luo, D. Tao, B. Geng, C. Xu, and S. J. Maybank, “Manifold
regularized multitask learning for semi-supervised multilabel image
classification,” IEEE Trans. Image Process., vol. 22, no. 2, pp. 523–536,
2013.

[4] R. Collobert, F. Sinz, J. Weston, and L. Bottou, “Large scale transductive
SVMs,” J. Mach. Learn. Res., vol. 7, no. Aug, pp. 1687–1712, 2006.

[5] J.-N. Hwang, J. J. Choi, S. Oh, and R. J. Marks, “Query-based learning
applied to partially trained multilayer perceptrons,” IEEE Trans. Neural
Netw., vol. 2, no. 1, pp. 131–136, 1991.

[6] D. Cohn, L. Atlas, and R. Ladner, “Improving generalization with active
learning,” Mach. Learn., vol. 15, no. 2, pp. 201–221, 1994.

[7] C. Campbell, N. Cristianini, A. Smola, and others, “Query learning with
large margin classifiers,” in ICML, 2000, pp. 111–118.

[8] G. Schohn and D. Cohn, “Less is more: Active learning with support
vector machines,” in ICML, 2000, pp. 839–846.

[9] Y. Leng, X. Xu, and G. Qi, “Combining active learning and
semisupervised learning to construct SVM classifier,” Knowl.-Based
Syst., vol. 44, pp. 121–131, 2013.

 14

[10] A. J. Joshi, F. Porikli, and N. Papanikolopoulos, “Multi-class active
learning for image classification,” in Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on, 2009, pp. 2372–
2379.

[11] A. J. Joshi, F. Porikli, and N. P. Papanikolopoulos, “Scalable active
learning for multiclass image classification,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 34, no. 11, pp. 2259–2273, 2012.

[12] K. Brinker, “Incorporating diversity in active learning with support vector
machines,” in ICML, 2003, vol. 3, pp. 59–66.

[13] Y. Yang, Z. Ma, F. Nie, X. Chang, and A. G. Hauptmann, “Multi-class
active learning by uncertainty sampling with diversity maximization,” Int.
J. Comput. Vis., vol. 113, no. 2, pp. 113–127, 2015.

[14] L. Zhang, C. Chen, J. Bu, D. Cai, X. He, and Thomas S. Huang, “Active
learning based on locally linear reconstruction,” IEEE Transactions on
Pattern Analysis and Machine Intelligence 33, no. 10 (2011): 2026-2038.

[15] H. Zhang, H. BvSB, M. Kong, H. Fang, and Z. Zhao, “Active Learning
with Sparse Reconstruction.”

[16] D. A. Cohn, Z. Ghahramani, and M. I. Jordan, “Active learning with
statistical models,” Journal of artificial intelligence research (1996).

[17] I. Triguero, S. García, and F. Herrera, “Self-labeled techniques for semi-
supervised learning: taxonomy, software and empirical
study,” Knowledge and Information Systems 42, no. 2 (2015): 245-284.

[18] N. Fazakis, S. Karlos, S. Kotsiantis, and K. Sgarbas, “Self-trained LMT
for semisupervised learning,” Computational intelligence and
neuroscience 2016 (2016): 10.

[19] Y. Hu, D. Zhang, Z. Jin, D. Cai, and X. He, “Active learning via
neighborhood reconstruction,” In Proceedings of the Twenty-Third
international joint conference on Artificial Intelligence, pp. 1415-1421.
AAAI Press, 2013.

[20] K. Yu, J. Bi, and V. Tresp, “Active learning via transductive experimental
design,” In Proceedings of the 23rd international conference on Machine
learning, pp. 1081-1088. ACM, 2006.

[21] H. Schütze, E. Velipasaoglu, and J. O. Pedersen, “Performance
thresholding in practical text classification,” In Proceedings of the 15th
ACM international conference on Information and knowledge
management, pp. 662-671. ACM, 2006.

[22] K. Tomanek, and U. Hahn, “A comparison of models for cost-sensitive
active learning,” In Proceedings of the 23rd International Conference on
Computational Linguistics: Posters, pp. 1247-1255. Association for
Computational Linguistics, 2010.

[23] B. C. Wallace, K. Small, C. E. Brodley, and T. A. Trikalinos, “Active
learning for biomedical citation screening,” In Proceedings of the 16th
ACM SIGKDD international conference on Knowledge discovery and
data mining, pp. 173-182. ACM, 2010.

[24] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
“LIBLINEAR: A library for large linear classification,” J. Mach. Learn.
Res., vol. 9, no. Aug, pp. 1871–1874, 2008.

[25] S. A. Nene, S. K. Nayar, H. Murase, and others, “Columbia object image
library (COIL-20),” 1996.

[26] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray, “Visual
categorization with bags of keypoints,” in Workshop on statistical
learning in computer vision, ECCV, 2004, vol. 1, pp. 1–2.

[27] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–
2324, 1998.

[28] M.-C. Chuang, J.-N. Hwang, K. Williams, and R. Towler, “Automatic fish
segmentation via double local thresholding for trawl-based underwater
camera systems,” In Image Processing (ICIP), 2011 18th IEEE
International Conference on, pp. 3145-3148. IEEE, 2011.

[29] T.-W. Huang, J.-N. Hwang, and C. S. Rose, “Chute based automated fish
length measurement and water drop detection,” In Acoustics, Speech and
Signal Processing (ICASSP), 2016 IEEE International Conference on, pp.
1906-1910. IEEE, 2016.

[30] G. Wang, J.-N. Hwang, K. Williams, F. Wallace, and C. S. Rose,
“Shrinking Encoding with Two-Level Codebook Learning for Fine-
Grained Fish Recognition,” In Computer Vision for Analysis of
Underwater Imagery (CVAUI), 2016 ICPR 2nd Workshop on, pp. 31-36.
IEEE, 2016.

[31] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories,” In Computer
vision and pattern recognition, 2006 IEEE computer society conference
on, vol. 2, pp. 2169-2178. IEEE, 2006.

[32] C. Cortes, and V. Vapnik, “Support-vector networks,” Machine
learning 20, no. 3: 273-297, 1995.

[33] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching
pursuit: Recursive function approximation with applications to wavelet
decomposition,” In Signals, Systems and Computers, 1993. 1993
Conference Record of The Twenty-Seventh Asilomar Conference on, pp.
40-44. IEEE, 1993.

[34] V. Sindhwani, P. Niyogi, M. Belkin, and S. Keerthi, “Linear manifold
regularization for large scale semi-supervised learning,” Proc. of the 22nd
ICML Workshop on Learning with Partially Classified Training Data.
Vol. 28. 2005.

[35] S. C. H. Hoi, R.Jin, J. Zhu, and M. R. Lyu, “Semisupervised SVM batch
mode active learning with applications to image retrieval,” ACM
Transactions on Information Systems (TOIS) 27.3: 16, 2009.

[36] Z. Xu, R. Akella, and Y. Zhang, “Incorporating diversity and density in
active learning for relevance feedback,” ECiR. Vol. 7. 2007.

[37] A. Gadde, A. Anis, and A. Ortega, “Active semi-supervised learning using
sampling theory f or graph signals,” Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data
mining. ACM, 2014.

[38] E. Pasolli, F. Melgani, D. Tuia, F. Pacifici, and W. J. Emery, “SVM active
learning approach for image classification using spatial
information,” IEEE Transactions on Geoscience and Remote
Sensing 52.4: 2217-2233, 2014.

[39] A. Altman, and J. Gondzio, “Regularized symmetric indefinite systems in
interior point methods for linear and quadratic
optimization,” Optimization Methods and Software11.1-4: 275-302,
1999.

[40] R. J. Vanderbei, and T. J. Carpenter, “Symmetric indefinite systems for
interior point methods,” Mathematical Programming 58.1-3: 1-32, 1993.

[41] B. Settles, “Active learning,” Synthesis Lectures on Artificial Intelligence
and Machine Learning 6.1: 1-114, 2012.

[42] E. Elhamifar, G. Sapiro, A. Yang, and S. S. Sasrty, “A convex
optimization framework for active learning,” In Computer Vision
(ICCV), 2013 IEEE International Conference on pp. 209-216, 2013.

[43] L. Lin, K. Wang, D. Meng, W. Zuo, and L. Zhang, “Active self-paced
learning for cost-effective and progressive face identification,” IEEE
transactions on pattern analysis and machine intelligence, 40(1), 7-19,
2018.

[44] L. Liang, and K. Grauman, “Beyond comparing image pairs: Setwise
active learning for relative attributes,” In Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition (pp. 208-215),
2014.

[45] K. Wang, Zhang, D., Li, Y., Zhang, R., & Lin, L, “Cost-effective active
learning for deep image classification,” IEEE Transactions on Circuits
and Systems for Video Technology, 2016.

[46] R. Tudor Ionescu, B. Alexe, M. Leordeanu, M. Popescu, D. P.
Papadopoulos, and V. Ferrari, “How hard can it be? Estimating the
difficulty of visual search in an image,” In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (pp. 2157-
2166), 2016.

[47] Y. Yan, F. Nie, W. Li, C. Gao, Y. Yang, and D. Xu, “Image classification
by cross-media active learning with privileged information,” IEEE
Transactions on Multimedia, 18(12), 2494-2502, 2016.

[48] S. Vijayanarasimhan, and K. Grauman, “Large-scale live active learning:
Training object detectors with crawled data and crowds,” International
Journal of Computer Vision, 108(1-2), 97-114, 2014.

[49] W. Cai, Y. Zhang, S. Zhou, W. Wang, C. Ding, and X. Gu, “Active
learning for support vector machines with maximum model change,”
In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases (pp. 211-226). Springer, Berlin, Heidelberg,
2014.

[50] B. Yang, J. T. Sun, T. Wang, and Z. Chen, “Effective multi-label active
learning for text classification,” In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data
mining (pp. 917-926). ACM, 2009.

[51] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,”
In AAAI (Vol. 4, p. 12), 2017.

[52] C. C. Paige, and M. A. Saunders, “LSQR: An algorithm for sparse linear
equations and sparse least squares,” ACM transactions on mathematical
software, 8(1), 43-71, 1982.

[53] G. Wang, J. N. Hwang, C. Rose, and F. Wallace, “Uncertainty sampling
based active learning with diversity constraint by sparse selection,”
In Multimedia Signal Processing (MMSP), IEEE 19th International
Workshop on (pp. 1-6). IEEE, 2017.

15

[54] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, ... and
S. Ghemawat, “TensorFlow: large-scale machine learning on
heterogeneous systems,” Software available from tensorflow. Org. URL
https://www.tensorflow.org/versions/r1.2/get_started/mnist/pros.

[55] H. W. Kuhn, and A. W. Tucker, “Nonlinear programming,” In Traces and
emergence of nonlinear programming (pp. 247-258). Birkhäuser, Basel,
2014.

[56] D. Tao, X. Li, X. Wu, and S. J. Maybank, “General tensor discriminant
analysis and gabor features for gait recognition,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 29(10), 2007.

[57] D. Tao, X. Tang, X. Li, and X. Wu, “Asymmetric bagging and random
subspace for support vector machines-based relevance feedback in image
retrieval,” IEEE transactions on pattern analysis and machine
intelligence, 28(7), 1088-1099, 2006.

[58] D. Tao, X. Li, X. Wu, and S. J. Maybank, “Geometric mean for subspace
selection,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 31(2), 260-274, 2009.

[59] B. Du, Z. Wang, L. Zhang, L. Zhang, and D. Tao, “Robust and
discriminative labeling for multi-label active learning based on maximum
correntropy criterion,” IEEE Transactions on Image Processing, 26(4),
1694-1707, 2017.

[60] B. Du, W. Xiong, J. Wu, L. Zhang, L. Zhang, and D. Tao, “Stacked
convolutional denoising auto-encoders for feature representation,” IEE E
transactions on cybernetics, 47(4), 1017-1027, 2017.

[61] B. Du, Z. Wang, L. Zhang, L. Zhang, W. Liu, J. Shen, and D. Tao,
“Exploring representativeness and informativeness for active
learning,” IEEE transactions on cybernetics, 47(1), 14-26, 2017.

[62] D. Cohn, L. Atlas, and R. Ladner, “Improving generalization with active
learning,” Mach. Learn., vol. 15, no. 2, pp. 201–221, 1994.

[63] Z. Ma, X. Chang, Y. Yang, N. Sebe, and A. G. Hauptmann, “The many
shades of negativity,” IEEE Transactions on Multimedia, 19(7), 1558-
1568, 2017.

https://www.tensorflow.org/versions/r1.2/get_started/mnist/pros

	I. INTRODUCTION
	II. Related Work
	III. Sparse Modeling and an Approximated Solution
	A. Multi-Class SVM Overview
	B. Uncertainty Measure Design
	C. Sample Selection via Sparse Modeling
	D. Approximated Solution 1: Greedy Search

	IV. Combine Uncertainty, Diversity and Density with ,𝑙-1. Approximation
	A. Selective Sampling for Sparse Modeling
	B. Combine Diversity, Density and Uncertainty
	C. Approximated Solution 2: QP via ,𝑙-1. Norm Relaxation

	V. Experimental Results and Analysis
	A. Experiment Setup
	B. Performance Comparison with Different Batch Sizes
	C. Performance Comparison Using Different Features
	D. Performance Comparison Using Different Seed Sizes
	E. Significance Test Analysis
	F. Performance Comparison of Data Transform in Similarity Matrix
	G. Effectiveness with Selective Sampling
	H. Computational Efficiency Comparison

	VI. Conclusion and Future Work
	References

