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Uncertainty Based Active Learning via Sparse 
Modeling for Image Classification 

Gaoang Wang, Jenq-Neng Hwang, Craig Rose, Farron Wallace 

Abstract—Uncertainty sampling based active learning has been 
well studied for selecting informative samples to improve the 
performance of a classifier. In batch mode active learning, a batch 
of samples are selected for a query at the same time. The samples 
with top uncertainty are encouraged to be selected. However, this 
selection strategy ignores the relations among the samples because 
the selected samples may have much redundant information with 
each other. This paper addresses this problem by proposing a 
novel method that combines uncertainty, diversity and density via 
sparse modeling in the sample selection. We use sparse linear 
combination to represent the uncertainty of unlabeled pool data 
with Gaussian kernels, in which the diversity and density are well 
incorporated. Selective sampling method is proposed before 
optimization to reduce the representation error. To deal with 𝒍𝒍𝟎𝟎 
norm constraint in the sparse problem, two approximated 
approaches are adopted for efficient optimization. Four image 
classification datasets are used for evaluation. Extensive 
experiments related to batch size, feature space, seed size, 
significant analysis, data transform and time efficiency 
demonstrate the advantages of the proposed method. 

Index Terms—active learning, sparse modeling, diversity, CNN 

I. INTRODUCTION 

N real-world applications based on machine learning Itechniques, it is usually very easy to collect a huge amount of 
unlabeled data. On the other hand, large number of labeled data 
are expensive to obtain. In such cases, there would be a huge 
labeling cost for supervised based learning. Besides that, the 
classifiers of supervised learning methods are always trained on 
a specific dataset, and the performance degrades when tested on 
a slightly different dataset. This is because the testing dataset 
may not be well represented by the training dataset. Moreover, 
for practical applications, it is unreasonable to re-train a 
supervised classifier based on the new dataset. Therefore, we 
always need to label the new dataset, which is expensive and 
non-trivial for automatic classification. Fortunately, such 
problems can be addressed by semi-supervised learning and 
active learning methods. 

Semi-supervised learning methods usually look for 
additional constraints and the data structures in the unlabeled 
dataset to improve the performance of trained classifiers 
[1,2,3,4,34]. In [1], pairwise must-link and cannot-link are 
taken as constraints for mixture modeling. For image 
classification, key words associated with both labeled and 
unlabeled data are used to improve the performance of the semi-
supervised classifiers [2]. Manifold regularization for multi-

label image classification is taken advantage of in [3]. The 
transductive support vector machine (TSVM) is also adopted in 
semi-supervised learning [4]. Some methods for semi-
supervised learning are not intrinsically geared to learning from 
both unlabeled and labeled data, but instead they make use of 
unlabeled data within a supervised learning framework. Take 
self-training for example [17,18], a supervised learning 
algorithm is first trained based on the labeled data. This 
classifier is then applied to the unlabeled data to generate more 
labeled examples as input for the supervised learning algorithm. 
Since the generated labels are not the actual ground truth, errors 
may be introduced in the training if the initial classifier is not 
robustly trained. For semi-supervised learning, the training is 
not stable, and can even collapse if the assumptions and the 
additional constraints are not actually the fact. 

Different from semi-supervised learning, active learning 
algorithms are able to interactively query the reliable labeler for 
ground truth to obtain new training data, and eventually 
overcome the deficiency of semi-supervised learning. 
Generally, there are two different settings to do the sample 
selection in active learning. One is purely relying on 
unsupervised approach to select samples based on the data 
structure of unlabeled samples without any knowledge of the 
ground truth labels [14,15,19,20,37]; the other is selecting 
samples with the help of an initially trained supervised classifier 
based on a seed set of limited labeled samples 
[5,6,7,8,35,36,38]. For the first category, since no information 
of ground truth is given at the beginning, most sample selection 
strategies are reconstruction based approaches, i.e., the top most 
informative samples that can represent the whole unlabeled 
dataset are selected. For the second category, since ground truth 
labels are provided by a limited number of seed set, the 
information given by the initially trained classifier can be well 
utilized. Since the data structure of unlabeled data can also be 
exploited for the second category, a combination of utilizing the 
data structure and the initially trained classifier is adopted in 
recent active learning studies [9,12,13,53,59,61]. In most of 
such approaches, not only the samples with high uncertainty, 
but also the samples with representativeness are taken into 
consideration in the sample selection process. 

In addition, different active learning approaches are designed 
for different applications [43,44,45,46,47,48], respectively. 
More specifically, active learning is combined with self-paced 
learning [43] for face identification using convolutional neural 
networks. Active learning strategy is also explored [44] for 
training relative attribute ranking functions, with the goal of 
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requesting  human comparisons only where they are  most  
informative.  In [45,47], active learning is  adopted  for image  
classification  problems.  Specifically, most  informative samples  
are selected for  human labeling based on the output of  deep  
neural  networks [45],  while  in [47]  visual and textual  
information are  effectively  combined for classification.  In [48],  i
a  novel  approach  is proposed  for live learning of  object  
detectors,  in which  the  system  autonomously  refines  its  models  
by actively requesting  crowd-sourced annotations on images  
crawled from  the  Web.  

In this  paper, we present  a novel  batch mode approach  that  
combines  the information given by  an initially  trained classifier  
and the data structure of  unlabeled samples via sparse modeling  
based on uncertainty sampling.  We discuss  the contributions  
and advantages  of  our  proposed method as  follows.  

(1) Represent sample uncertainty  via  Gaussian kernels.  
In the sample selection,  we use sparse linear combination of  
Gaussian kernels  to represent  the  uncertainty  scores  of  
unlabeled samples.  As  a result,  uncertainty, diversity and  
density are combined in the sample selection via sparse 
representation.  

(2) Selective sampling.  Inspired from  [62],  we propose  
selective sampling  approach  before the optimization. The  
samples with low  uncertainty are filtered  out  by locality  
thresholding.  There are two advantages  of  this selective  
sampling strategy. On one side, the  sparse representation is no  t
longer influenced by low uncertainty samples. As a result, the  
representation  error can be largely  reduced.  On the  other side,  
the number of  candidate samples for selection  is reduced  
dramatically, which  results in  faster  convergence  during  
optimization.  

(3) Efficient optimization  by approximated approaches.  
We propose two approximated approaches  to  solve the  sparse 
modeling problem.  The first one  is  based on a greedy search  
method.  Samples are sequentially selected to maximize  the 
reduction  of total uncertainty.  For the second approach,  the 
sparse representation  problem  is converted into  a quadratic 
programming formulation.   t

The outline  of the paper is  as follows: In Section II,  we  i
review some related work  of active learning. The sparse 
modeling of  the  proposed method is  then introduced in Section  i
III.  In  Section  IV,  modification  of  sparse  modeling  is  
introduced in the sample selection. Experiments are presented  
in Section V. Finally, we provide some conclusions and future  t
work in Section VI.  

II.  RELATED  WORK  
Active learning  shows  great  power  of  improving the  

robustness of  classifiers  when dealing with  limited  training data  
or even without any  labeled  ground truth.  Representativeness of  
data has  been studied in the  sample  selection strategy  when no  
ground truth labels are  given.  As it is important to exploit  the  
data distribution when  selecting the data to  be labeled  [16],  
representativeness  sampling tries to select the  most  
representative  data points according to the  distribution  of 
unlabeled data.  For e xample, some well-known approaches  of  
representativeness  sampling  [14,15,19,20,37]  have been  

reported. In [20], a simple concept, called transductive 
experimental design, is proposed to explore available unlabeled 
data. In [14], the most representative points to reconstruct the 
whole dataset are selected in active learning by the locally linear 
reconstruction algorithm. Similarly, in [15], sparsity is taken 
nto consideration in the reconstruction scheme for the sample 

selection. More recently, locality information by neighborhood 
samples is utilized in the reconstruction in [19]. However, for 
representativeness sampling based active learning, since no 
ground truth label information is given in the experiment 
setting, the sample selection is purely processed in an 
unsupervised way. Therefore, the sampling strategy may 
become inefficient if some assumptions are not met in the 
unsupervised learning. 

On the other hand, some active learning methods take 
advantage of a set of seed labeled samples to initialize the 
classifiers [41], such as uncertainty sampling, query-by-
committee, expected model change and expected error 
reduction, etc. Uncertainty sampling is a good way to utilize a 
pre-trained model in the sample selection. For example, for 
binary problems, feature points that are close to the 
classification boundary are chosen to label as the most uncertain 
samples [5,6,7,8] based on different types of classifiers, like 
neural networks [5,6] and support vector machines (SVMs) 
[7,8,35,38,57]. For multi-class classification problems, the first 
wo most likely predictions are used to calculate the uncertainty 

[10,11]. However, the performance of such uncertainty 
sampling based active learning largely depends on the 
robustness of the pre-trained classifiers. Sometimes uncertainty 
sampling even works worse than random sampling in scenarios 
when very limited labeled data are used to train the initial 
classifier [21,22,23]. 

Since the representativeness of the unlabeled data can also be 
utilized with a pre-trained classifier, many recent approaches 
have incorporated the representativeness in their uncertainty 
design to overcome the weakness of uncertainty sampling based 
methods [9,12,13,42,53]. In [9], the distribution of the data is 
aken into consideration in the sample selection. Diversity is 
ncorporated in the version space reduction in [12]. In [42], a 

convex optimization framework is proposed with diversity 
ncorporated in active learning with an arbitrary classifier. 

The most recent and related work with diversity 
maximization in the sample selection is proposed in [13], where 
he sample selection is modeled as an optimization problem 

with the following formulation, 

1
𝑓𝑓 = argmin𝑓𝑓 − 𝑓𝑓𝑇𝑇𝑠𝑠 +

2 
𝑓𝑓𝑇𝑇𝐾𝐾𝑓𝑓, 

𝑛𝑛 s. t. ∑𝑖𝑖=1 𝑓𝑓𝑖𝑖 = 1, 𝑓𝑓𝑖𝑖 ≥ 0, (1) 

where 𝑓𝑓 is the updated ranking score, vector 𝑠𝑠 is the sample 
�𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗�uncertainty, 𝐾𝐾 is a kernel matrix with 𝐾𝐾𝑖𝑖,𝑗𝑗 = exp(− )

𝜎𝜎2 

which measures the similarity between points 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 . The 
first term −𝑓𝑓𝑇𝑇𝑠𝑠 penalizes less if samples with high uncertainty 
also get high ranking scores. With the kernel matrix 𝐾𝐾 in the 
second term, 𝑓𝑓𝑇𝑇𝐾𝐾𝑓𝑓, the algorithm tends to give high ranking 
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Fig. 1. The flowchart of the learning system. 

scores to samples with low similarity. The problem is optimized 
to find the best trade-off between the uncertainty and the 
diversity. It shows great power in classification problems with 
diversity maximization. However, there are two major 
weaknesses in the algorithm: 1) Isolated distinct samples with 
high uncertainty are encouraged to be selected. This is because 
isolated samples are always dissimilar to other samples. 
Therefore Eq. (1) will generate little penalty on the second term. 
However, since isolated samples are far away from the data 
density, these samples are “unimportant” or outliers. Selecting 
such samples is not very helpful in improving the classifier 
performance. This strategy results in inefficient selection 
especially when we are interested in selecting a small batch of 
samples. 2) The algorithm does not take the batch size into 
consideration during optimization. In fact, the batch size does 
matter in the sample selection. Take an extreme situation for 
example. If the batch size is one, then the sample that lies in the 
center of the pool data would be the most representative sample. 
However, if the batch size is two, then we may divide the pool 
data into two clusters and the sample near the center of each 
cluster would be the most representative sample. In other words, 
the selection strategy should vary with the batch size. To 
address these issues, active learning via sparse modeling is 
proposed in the following section. 

III. SPARSE MODELING AND AN APPROXIMATED SOLUTION 

The flowchart of our proposed framework is shown in Fig. 1. 
First, a multi-class SVM classifier is initially trained on the 
labeled data at the beginning. Then we apply the trained 
classifier on the unlabeled data. Based on the SVM predictions, 
sparse modeling via Gaussian kernels is used for sample 
selection. Then these selected samples are labeled and moved 
from unlabeled set to labeled set. At the end of each iteration, 
the classifier is re-trained with the updated labeled set. Finally, 
the performance of active learning is evaluated on an 
independent testing dataset. In this section, we will introduce 
the multi-class SVM classifier, uncertainty measure design, 
sample selection and an approximated solution to the sparse 

problem.  Note  that, in this  paper we  only use SVM classifiers  
for  our active  learning due to the much lower computational  
complexity requirement, compared to most recent  high  
computational demanding convolution neural  networks  
(CNNs).  In fa ct, the proposed  scheme can  also be used  in  many  
types of classifiers, such  as CNNs, if the complexity  
requirements  can  be relaxed.   

A.  Multi-Class  SVM Overview  
For  a multi-class classification problem, we can train  linear  

SVM [32]  classifiers based  on  the “one vs.  the rest”  strategy.  
Assume we have  𝐾𝐾  classes.  For the  k-th class, we treat the  
training samples that belong  to this class as positive samples  
and all  the  remaining  samples  as  negative samples.  Then  the k-
th  classifier  is trained  based on  the following  equation  provided  
in [24],  

 
       𝑤𝑤�𝑘𝑘 = arg min 𝐶𝐶𝑝𝑝 ∑𝑁𝑁 1

𝑖𝑖 =1 𝑙𝑙2(𝑦𝑦𝑖𝑖𝑤𝑤𝑇𝑇
𝑘𝑘 𝑥𝑥𝑖𝑖) + ‖𝑤𝑤 2

𝑘𝑘‖  ,         (2)  
𝑤𝑤𝑘𝑘∈𝑅𝑅𝑑𝑑 

 
2 

 
where  𝑙𝑙2(z)  is given by  𝑙𝑙2(𝑧𝑧) = max(0,1 − 𝑧𝑧)2 ,  𝑤𝑤�𝑘𝑘  are learned  
weights for the  𝑘𝑘-th  classifier,  𝐶𝐶𝑝𝑝  is  a real-valued regularization  
parameter,  and (𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖)  is  the  i-th  instance-label  pair.  We use 𝑙𝑙2  
loss instead  of hinge-loss  to  make the training more efficient  
since the gradient of  𝑙𝑙2  loss  is continuous.  For simplification  
purposes, we use  ‖∙‖  without  subscript to denote the  𝑙𝑙2  norm  
‖∙‖2 .  The  final  SVM classification  result can thus  be 
determined by  the  following  equation,  

 
       𝑘𝑘� = arg max (𝑤𝑤�𝑇𝑇𝑘𝑘 𝑥𝑥𝑖𝑖),                             

𝑘𝑘∈{1,2,…,𝐾𝐾} 
(3)  
 
where 𝑤𝑤�𝑇𝑇𝑘𝑘 𝑥𝑥𝑖𝑖  is  the prediction  of the  testing sample  𝑥𝑥𝑖𝑖  
corresponding to  the  k-th  class.  

B.  Uncertainty Measure Design  
In active  learning,  uncertainty sampling aims to choose the  

most uncertain  samples  from the  unlabeled  data  pool  to label.  
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Fig.  2. Overview of the sparse modeling for sample selection. (a): Uncertainty scores for feature points in 2-D space. The color from black to red  represents the 
uncertainty score from low to high. (b): Uncertainty scores are represented in z-axis. (c): Use combination of selected Gaussian kernels to represent the uncertainty 
scores. 𝑓𝑓  is a sparse vector  in  which only the indices o f selected samples  have non-zero values.  𝑄𝑄  is a collection of Gaussian kernels of all feature points. (d): 
Representation error  with  selected  Gaussian kernels.  

For SVM  based classifier, it is common to use the  distance  
between the  first two most likely predictions. Similar to [10,11],  
we define the uncertainty  score  based on  the  “best vs. the  
second best”  (BvSB)  strategy,  
 

     𝑠𝑠 𝑇𝑇 𝑇𝑇
BvSB(𝑥𝑥𝑖𝑖) = max (𝑤𝑤�𝑘𝑘2𝑥𝑥𝑖𝑖 − 𝑤𝑤�𝑘𝑘1𝑥𝑥𝑖𝑖 + 1, 0),             (4)  

 
where  𝑘𝑘1  and  𝑘𝑘2  are the  first  two  most  likely  predicted  classes.  
We take max( ∙)  operation  to  restrict the uncertainty score  in  the  
range  of [0,  1].  

C.  Sample Selection  via  Sparse Modeling  
Given  uncertainty scores  generated from the classifiers,  we  

would like to select the most  informative samples for a query.  
The simplest selection strategy is that  we always select the  
samples up to the batch size,  𝐵𝐵𝑞𝑞 ,  with the  highest  uncertainty  
scores.  However, this strategy ignores the  relations among the  
pooled unlabeled samples. Sometimes the samples with top  
uncertainty  are  very similar  to each other.  We  should avoid  
selecting samples with  redundant  information in the  same 
batch.   

To achieve this goal,  we  can  formulate the problem via sparse 
representation  as  shown in  Fig. 2.  In other  words, we  want to  
select  a  few  samples  that  can cover  the  information of  the  pool  
data as much as possible.  To  be specific, we propose  the  
following formulation to modify the uncertainty scores before  
sample selection,  

 
𝑓𝑓 = arg min‖𝑄𝑄𝑓𝑓 − 𝑠𝑠‖2 , 

𝑓𝑓 

      𝑠𝑠. 𝑡𝑡. ‖𝑓𝑓‖0 = 𝐵𝐵𝑞𝑞 ,  𝟎𝟎 ≤ 𝑓𝑓 ≤ 𝟏𝟏,                    
(5)  
 
where  𝑠𝑠  is the original uncertainty score,  𝑓𝑓  is the modified  
uncertainty score,  ‖𝑓𝑓‖0 = card(𝑓𝑓)  represents the number of  
non-zeros entries,  𝟎𝟎  and  𝟏𝟏  are all-zero vector  and all-one  
vector,  respectively,  𝐵𝐵𝑞𝑞  is  the  batch  size and  𝑄𝑄  is  the s imilarity  
matrix among all the  unlabeled  samples. Specifically,  𝑄𝑄𝑖𝑖,𝑗𝑗  
represents the similarity between samples  𝑖𝑖  and  𝑗𝑗  in the range  
of [0, 1].  The similarity can be measured  in different ways  

[56,58].  One  common  method  of  designing similarity  matrix 𝑄𝑄  
is  using the  Gaussian  kernel  of  two points,  i.e.,  

 
2𝑥𝑥 −𝑥𝑥

       
� �

𝑄𝑄 , = exp �− 𝑖𝑖 𝑗𝑗
𝑖𝑖 𝑗𝑗  2 �.                   

𝜎𝜎

(6)  
 

However, when dealing with high-dimensional data points,  
which are  commonly  very sparse,  the Euclidean  distance might  
not  be a  good choice to represent the similarity.  To better  
represent the similarity between two samples,  we define the  
matrix  𝑄𝑄  as  
 

2 �𝑥𝑥� −𝑥𝑥� �
exp �− 𝑖𝑖 𝑗𝑗 � , if  𝑖𝑖 ∈ 𝑁𝑁 ,

            𝑄𝑄 2  𝜎𝜎  𝑗𝑗
𝑖𝑖,𝑗𝑗 = �                

0,                               if  𝑖𝑖 ∉ 𝑁𝑁𝑗𝑗 , 
(7)  

    𝑥𝑥� = [𝑤𝑤�1, 𝑤𝑤� 𝑇𝑇
2, … , 𝑤𝑤�𝐾𝐾 ] 𝑥𝑥,                                  

(8)  
 
where  𝑥𝑥�𝑖𝑖  and  𝑥𝑥�𝑗𝑗  are  transformed  data  samples  of  the  initial  data  
𝑥𝑥𝑖𝑖  and  𝑥𝑥𝑗𝑗 ,  𝑁𝑁𝑗𝑗  is the  neighbor  index set of  the  j-th  sample.  Here  
we use the learned  weights of  SVM classifiers as  the  data 
transform.  

Assume there are 𝑁𝑁𝑈𝑈  unlabeled samples.  To better  illustrate  
the formulation in Eq. (5), we can  write matrix  𝑄𝑄  as  𝑄𝑄 = 
�𝑞𝑞1, 𝑞𝑞2, … , 𝑞𝑞𝑁𝑁𝑈𝑈�  and each column vector  𝑞𝑞𝑗𝑗  denotes  the 
similarity weights between the  j-th  sample and all  unlabeled  
samples  via the Gaussian kernel.  In this  formulation, we are 
interested in  looking for  a sparse linear combination of the  
similarity weight  vectors  centered  at  selected  samples,  i.e.,  𝑄𝑄𝑓𝑓,  
to represent the original uncertainty scores  𝑠𝑠.  After the  problem  
is solved, the  indices of non-zero entries  in  𝑓𝑓  would be  the  
indices  of  our  selected  samples.  

D.  Approximated Solution  1:  Greedy Search  
The solution to  the  problem  in Eq. (5) can be well  

approximated using greedy  search  method, i.e.,  we can select  
samples one-by-one and modify the  uncertainty scores after  



 

each selection.  Note that this greedy  search  method still follows  
the  batch mode setting since there is  no need to update  the
classifier  after  each  sequential selection.  We  denote the
similarity matrix  𝑄𝑄  as  𝑄𝑄 = �𝑞𝑞1, 𝑞𝑞2, … , 𝑞𝑞𝑁𝑁𝑈𝑈� ,  where each  
column vector  𝑞𝑞𝑗𝑗  in  𝑄𝑄  represents Gaussian kernel weights
centered at the location of  𝑥𝑥�𝑗𝑗 .  For the  t-th selection from 1 to  
𝐵𝐵𝑞𝑞,  the  selection strategy  is  as  follows,  
 

              � 2𝑘𝑘 𝑡𝑡 , 𝑓𝑓𝑘𝑘� 𝑡𝑡  = arg min �𝑓𝑓 𝑡𝑡
𝑗𝑗𝑞𝑞𝑗𝑗 − 𝑠𝑠 � ,                 

𝑗𝑗∈𝑈𝑈,𝑓𝑓𝑗𝑗 

(9)  
 
where  𝑠𝑠𝑡𝑡  is  a vector of  uncertainty scores of all unlabeled
samples  at time 𝑡𝑡,  𝑓𝑓𝑗𝑗  is  a scalar  which represents the modified 
uncertainty s core of  the  𝑗𝑗 -th sample,  𝑈𝑈  is the index  set of
unlabeled data,  𝑘𝑘�𝑡𝑡  is  the index of selected sample and  𝑓𝑓𝑘𝑘� 𝑡𝑡   is  the  
modified  uncertainty  score for  the selected  sample.  

This  can  be solved by sequentially obtaining  𝑘𝑘� 𝑡𝑡  and 𝑓𝑓𝑘𝑘� 𝑡𝑡  
using  

 
                 𝑘𝑘� 𝑡𝑡 = arg max 𝑞𝑞𝑇𝑇𝑗𝑗 𝑠𝑠𝑡𝑡 ,                    

𝑗𝑗∈𝑈𝑈 

(10)  
                 𝑓𝑓 2= arg min�𝑓𝑓 𝑞𝑞 − 𝑠𝑠𝑡𝑡𝑘𝑘� 𝑡𝑡 𝑘𝑘� 𝑡𝑡 𝑘𝑘� 𝑡𝑡  � .                 

𝑓𝑓𝑘𝑘�𝑡𝑡 

(11)  
 
In Eq.  (10),  the  sample  with the  maximum  correlation between 
the  Gaussian kernel  𝑞𝑞𝑗𝑗  and uncertainty  score 𝑠𝑠  is selected.  Then 
the modified  uncertainty  of the selected sample is calculated  
from  Eq.  (11).   

After  each  selection,  the remaining  uncertainty is calculated  
from  

 
     𝑠𝑠𝑡𝑡+1 = max (𝑠𝑠𝑡𝑡 − 𝑓𝑓𝑘𝑘� 𝑡𝑡𝑞𝑞𝑘𝑘� 𝑡𝑡 , 0).                

(12)  
 
For each iteration,  we keep the uncertainty score 𝑠𝑠𝑡𝑡+1  to be
non-negative.  Then we move  𝑘𝑘�𝑡𝑡  from  the  unlabeled  set  𝑈𝑈  to the  
labeled set  𝐿𝐿 .  This  greedy search  method  is similar to
orthogonal  matching pursuit  (OMP)  [33],  except  that  we only  
keep non-negative values  for residuals in Eq. (12).  The 
approach  is  summarized  in  Algorithm  1.  We name  this  method 
as  sparse  modeling by  greedy search  (SMGS).  
__________________________________________________  
Algorithm  1: SMGS__________  ___________________        

Input:  original  uncertainty  score  𝑠𝑠,  similarity  matrix  𝑄𝑄,  
labeled  set  𝐿𝐿,  unlabeled  set  𝑈𝑈.   
Initialization:  Set  𝑠𝑠1 = 𝑠𝑠.  
for  𝑡𝑡 = 1: 𝐵𝐵𝑞𝑞  do  

Choose  𝑘𝑘� 𝑡𝑡 = arg max 𝑞𝑞𝑇𝑇𝑗𝑗 𝑠𝑠𝑡𝑡  from  𝑈𝑈  for a  query.  
𝑗𝑗∈𝑈𝑈 

  Compute  𝑓𝑓𝑘𝑘� 𝑡𝑡   by 
   

2𝑓𝑓𝑘𝑘� 𝑡𝑡  = arg min�𝑓𝑓 𝑡𝑡
𝑘𝑘� 𝑡𝑡𝑞𝑞𝑘𝑘� 𝑡𝑡 − 𝑠𝑠 � . 

𝑓𝑓𝑘𝑘�𝑡𝑡 

Update  the  uncertainty  scores  of  the  next  iteration  
using  

 

 
 

 

 

 

 

     

   𝑠𝑠𝑡𝑡+1 = max( 𝑠𝑠𝑡𝑡 − 𝑓𝑓𝑘𝑘� 𝑡𝑡𝑞𝑞𝑘𝑘� 𝑡𝑡 , 0).  
  Move  sample  index 𝑘𝑘�𝑡𝑡  from  𝑈𝑈  to  𝐿𝐿.  

end for  
      Output:  updated  labeled set  𝐿𝐿.  
______________________________________________________________   

 
Although  the  sparse  modeling  problem  can be  approximated  

using Algorithm 1,  there are still  three  major  drawbacks of the  
formulation  in Eq. (5): 1)  the  sparse representation is sensitive  
to  the samples with low uncertainty  scores; 2)  the uncertainty,  
diversity  and  density  are not  well  combined  in the  formulation;  
3)  optimal solution is  not guaranteed using  greedy search  
method.  We  will illustrate how  we can overcome  these  
drawbacks  in the  following  section.  

IV.  COMBINE UNCERTAINTY,  DIVERSITY AND DENSITY  WITH   
𝑙𝑙1  APPROXIMATION  

Sparse modeling is a  good way to incorporate diversity and 
density in the  sample selection.  However, it is sensitive to the  
samples with  low  uncertainty scores.  A pre-processing step,  i.e.,  
selective sampling, can address this problem before sparse 
modeling. In addition to diversity and density, we still need to 
focus on high  uncertainty samples. Hence, a trade-off among 
diversity, density and  uncertainty  cannot  be avoided. Moreover,  
an efficient approximation is needed for  solving the sparse  
problem with  𝑙𝑙0  norm.  In this section,  selective sampling,  
modification of the sparse modeling and  an  efficient  
optimization approach  are  proposed.  

A.  Selective  Sampling  for  Sparse  Modeling  
For multi-class  classification problems,  there is  often the case  

that samples with high similarity  may  have a large difference in  
the uncertainty. This situation results from  the non-robust  
classifier  due to the limited training  data. Therefore, the  
neighboring samples for a given selected  sample may have  
large difference in the uncertainty. Once we apply a  Gaussian 
similarity kernel on  a  given sample,  the samples with  high  
uncertainty  cannot be  well represented by the kernel if several  
low  uncertainty samples are around. This is because the loss 
function defined in Eq. (5) is to minimize  the representation  
error  of all samples including low  uncertainty samples  as 
illustrated in the  example given in  Fig. 3.  From the  top-right  
figure of  Fig. 3, we can see that  low  uncertainty samples can  
have a large effect on the representation error.  With the  
selective sampling  strategy  adopted in bottom-left of  Fig. 3,  the 
 s a  m   p  l e  s  w    i  t h    low  uncertainty are filtered out  before the sparse  
modeling,  resulting  in  lower  representation errors  as  shown in  
bottom-right  of  Fig.  3.   

To  implement  this  selective  sampling  strategy shown in  Fig.  
3,  we design  a locality thresholding method to select  high  
uncertainty samples  among neighboring samples.  Given an  
unlabeled sample 𝑗𝑗 ,  we compare it with its neighboring  
unlabeled  samples  𝑖𝑖 ∈ 𝑁𝑁𝑗𝑗 .  We  define the uncertainty influence,  
𝐼𝐼𝑖𝑖,𝑗𝑗 ,  as a weighted uncertainty s core  from  the sample 𝑖𝑖  to the  
sample 𝑗𝑗, i.e.,  𝐼𝐼𝑖𝑖,𝑗𝑗 = 𝑄𝑄𝑖𝑖,𝑗𝑗𝑠𝑠𝑖𝑖 .  If  𝐼𝐼𝑖𝑖,𝑗𝑗  has a much higher  value than  
𝑠𝑠𝑗𝑗,  we should  not select the sample 𝑗𝑗  since it has a much lower  
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uncertainty than its  neighboring samples. Let’s define the  
influence  difference  𝑑𝑑𝑗𝑗  as,   
 

𝑑𝑑𝑗𝑗 = max 𝐼𝐼𝑖𝑖,𝑗𝑗 − 𝑠𝑠𝑗𝑗  𝑖𝑖∈𝑁𝑁𝑗𝑗 

= max𝑄𝑄𝑖𝑖,𝑗𝑗𝑠𝑠𝑖𝑖 − 𝑠𝑠𝑗𝑗 .                    (13)  
𝑖𝑖∈𝑁𝑁𝑗𝑗 

diversity in the sample selection,  where 𝐴𝐴 = 𝑄𝑄𝑇𝑇𝑄𝑄  is  a positive  
semi-definite  matrix  with  𝐴𝐴𝑖𝑖,𝑗𝑗  measuring  the similarity  between  
samples  𝑖𝑖  and  𝑗𝑗.  We can  see that if  𝐴𝐴𝑖𝑖,𝑗𝑗  has a high  value and 
both 𝑖𝑖  and  𝑗𝑗  have  been  selected, then  𝑓𝑓𝑖𝑖𝐴𝐴𝑖𝑖,𝑗𝑗𝑓𝑓𝑗𝑗  would have  a very  
high value,  which leads  to  a heavy  penalty  on the  loss  function.  
As a result, this term guarantees that samples with  high  
similarities cannot  be selected at the same time, i.e.,  diverse  

Fig. 3.  An example of selective sampling.  The first row shows the sparse  modeling without selective sampling, which  results in high representation error.  The 
second row shows the effectiveness with selective sampling before sparse modeling,  which can largely reduce the representation error.  

To be s pecific,  the samples  with  𝑑𝑑𝑗𝑗 > 𝑑𝑑thresh  are filtered out,  
where  𝑑𝑑thresh  is a  pre-defined threshold.  In other w ords, we  
select  samples with the  uncertainty scores  that are  not much  
lower  than the  uncertainty of  the neighboring samples.  We 
denote the  index  set  of selected samples as  𝑆𝑆𝑈𝑈 .  Note that this  
pre-selection step filters  out  samples in their local  neighbors  
instead of using  a global  threshold,  which is  more  suitable for  
sparse representation.   

There  are  two  advantages  of  this  selective  sampling  strategy.  
On  one side,  the sparse representation is no longer influenced 
by low uncertainty samples.  On t he other  side,  the number of  
candidate samples is largely reduced, which also reduces the  
complexity  in  the  optimization.  

B.  Combine  Diversity,  Density  and  Uncertainty  
In  this  subsection, we will  demonstrate  how  we combine  

diversity,  density and  uncertainty by modified sparse  modeling.  
After selective sampling,  we only focus  on a subset of  the  
unlabeled samples, i.e.,  𝑆𝑆𝑈𝑈 = {𝑘𝑘1, 𝑘𝑘2, … , 𝑘𝑘𝑚𝑚 }  with  𝑚𝑚 = 
card(𝑆𝑆𝑈𝑈 ).  Hence, we modify the variables in Eq.  (5) with  𝑠𝑠 = 
[𝑠𝑠 , 𝑠𝑠 𝑇𝑇
𝑘𝑘1 , 𝑠𝑠𝑘𝑘2 

, …  
𝑘𝑘  

 and 𝑄𝑄 𝑚𝑚] = �𝑞𝑞𝑘𝑘1 , 𝑞𝑞𝑘𝑘2 , … , 𝑞𝑞𝑘𝑘𝑚𝑚� .  Moreover, we  
rewrite  Eq.  (5) as,  

 
       𝑓𝑓 = arg min‖𝑄𝑄𝑓𝑓 − 𝑠𝑠‖2 , 

𝑓𝑓 

      = arg min 1  𝑓𝑓𝑇𝑇𝑄𝑄𝑇𝑇𝑄𝑄𝑓𝑓 − 𝑓𝑓𝑇𝑇𝑄𝑄𝑇𝑇𝑠𝑠  
𝑓𝑓 2 

     𝑠𝑠. 𝑡𝑡. ‖𝑓𝑓‖0 = 𝐵𝐵𝑞𝑞 ,  𝟎𝟎 ≤ 𝑓𝑓 ≤ 𝟏𝟏.                
(14)  
 
We analyze the above  formulation  in  three aspects  as  follows.  

(1)  Diverse term. The first term  1 𝑓𝑓𝑇𝑇𝑄𝑄𝑇𝑇𝑄𝑄𝑓𝑓  measures the  
2 

samples  are encouraged  to  be selected.   
(2) Density term. The second term,  −𝑓𝑓𝑇𝑇𝑄𝑄𝑇𝑇𝑠𝑠, measures the  

density in the  sample selection.  We can  treat  (𝑄𝑄𝑓𝑓)𝑇𝑇𝑠𝑠  as a  
correlation between a combination  of  selected  Gaussian kernels  
and the  uncertainty scores  𝑠𝑠 .  If we have a large density of  
samples around selected samples, then there would be a  high 
correlation between  𝑄𝑄𝑓𝑓  and 𝑠𝑠.  Therefore, there is  only a small  
penalty  on the  loss  function.   

(3) Uncertainty  trade-off.  To  emphasize high uncertainty  
samples, an uncertainty  term,  −𝑓𝑓𝑇𝑇𝑠𝑠,  can be  added to strengthen  
the  role of  uncertainty in the  sample selection  as shown in Eq.  
(15).   

We can relax the density term  and uncertainty  term with  
penalty  parameters  𝜆𝜆1  and 𝜆𝜆2,  so that  the  modified formulation  
of  the  sparse  modeling becomes,  

 
1 

𝑓𝑓 = arg min  𝑓𝑓𝑇𝑇𝑄𝑄𝑇𝑇𝑄𝑄𝑓𝑓 − 𝜆𝜆1𝑓𝑓𝑇𝑇𝑄𝑄𝑇𝑇𝑠𝑠 − 𝜆𝜆2𝑓𝑓𝑇𝑇𝑠𝑠, 
𝑓𝑓 2 

1 
= arg min  𝑓𝑓𝑇𝑇𝑄𝑄𝑇𝑇𝑄𝑄𝑓𝑓 − 𝑓𝑓𝑇𝑇(𝜆𝜆1𝑄𝑄𝑇𝑇 + 𝜆𝜆2𝐼𝐼)𝑠𝑠,  

𝑓𝑓 2 
  𝑠𝑠. 𝑡𝑡. ‖𝑓𝑓‖0 = 𝐵𝐵𝑞𝑞 ,  𝟎𝟎 ≤ 𝑓𝑓 ≤ 𝟏𝟏.                   

(15)  
 
To better  demonstrate the difference between Eq. (15) and Eq.  
(1) [13],  we make some detailed  analyses  as  follows.   
 Density analysis.  Eq.  (1) in [13] does  not use  the  density  

term  of  Eq. (15),  −𝑓𝑓𝑇𝑇𝑄𝑄𝑇𝑇𝑠𝑠.  As a  result,  isolated distinct  
samples  are encouraged to  be selected  in Eq. (1). This is  
because isolated samples are dissimilar to other  samples,  
therefore Eq. (1)  will generate  a small  penalty on the  
diverse  term. However, since isolated samples are far  
away from  the data density,  these samples  are 



 

“unimportant”  or outliers. Selecting such samples is not  
very  helpful  for  the classifier  to  improve the performance.  

 Sparsity analysis. Eq. (15) is derived from  sparse 
representation  with only  selected  samples being  
considered in  the linear combination.  As a result,  the  
number  of batch size,  𝐵𝐵𝑞𝑞 ,  is  incorporated in our  
formulation.  In other words, the  optimal solution is  
determined with  𝐵𝐵𝑞𝑞  as a hyper-parameter.  Different from  
the  proposed method, Eq. (1) is  not  derived from sparse  
modeling and  therefore  the  sparsity  in  their  formulation  is 
never  analyzed. Besides, they  do  not  incorporate the batch  
size in  their  optimization.   

 Efficiency analysis.  In our  formulation, we  construct  
matrix  𝑄𝑄  with only k-nearest  neighbors, as illustrated in  
Eq.  (7).  As a  result, this  setting makes the  quadratic matrix  
𝑄𝑄𝑇𝑇𝑄𝑄  become a sparse matrix, which leads to  efficient  
optimization [52].  Moreover, the selective sampling step  
can also largely reduce the searching space.  On the  
contrary, the  k-nearest  neighbors  strategy  cannot  be  easily 
adopted in matrix 𝐾𝐾  of  Eq. (1).  This is because  this  setting  
will  make  𝐾𝐾  become a nonsymmetric matrix.  Therefore,  
the convexity of the  formulation will no longer hold,  
which only  results  in  local  minimum  solution.  

C.  Approximated  Solution  2: QP  via  𝑙𝑙1  Norm  Relaxation  
We  are  interested in  the  sparse  solution  of  Eq.  (15),  which  is  

NP-hard  since there is an  𝑙𝑙0 -norm  constraint.  If we have  
card(𝑆𝑆𝑈𝑈 )  pre-selected  unlabeled samples, then we should try 

card(𝑆𝑆𝑈𝑈 )� �  combinations  to select the optimal  𝐵𝐵𝑞𝑞  samples  for 𝐵𝐵𝑞𝑞 

a query, which  is not practical.  Therefore,  an  approximated  
solution  is  proposed  via  𝑙𝑙1-norm  relaxation, i.e.,  we can relax  
‖𝑓𝑓‖0  to  ‖𝑓𝑓‖1.  As a  result,  the problem  becomes   

 
1 

𝑓𝑓 = arg min 𝑓𝑓𝑇𝑇𝑄𝑄𝑇𝑇𝑄𝑄𝑓𝑓 − 𝑓𝑓𝑇𝑇(𝜆𝜆 𝜆𝜆  
𝑓𝑓 2 1𝑄𝑄𝑇𝑇 + 2𝐼𝐼)𝑠𝑠,

    𝑠𝑠. 𝑡𝑡. ‖𝑓𝑓‖1 = 𝐵𝐵𝑞𝑞 ,  𝟎𝟎 ≤ 𝑓𝑓 ≤ 𝟏𝟏.                      
(16)  
 
It is  equivalent  to   

            
1 

𝑓𝑓 = arg min  𝑓𝑓𝑇𝑇𝑄𝑄𝑇𝑇𝑄𝑄𝑓𝑓 − 𝑓𝑓𝑇𝑇(𝜆𝜆 𝑇𝑇 
1𝑄𝑄 + 𝜆𝜆2𝐼𝐼)𝑠𝑠, 

𝑓𝑓 2 
    𝑠𝑠. 𝑡𝑡. 𝟏𝟏𝑇𝑇𝑓𝑓 = 𝐵𝐵𝑞𝑞 ,  𝐶𝐶𝑓𝑓 ≤ 𝑑𝑑,                           

(17)  
 
where  𝐶𝐶 = [−𝐼𝐼, 𝐼𝐼]𝑇𝑇 ,  𝑑𝑑 = [𝟎𝟎𝑇𝑇 , 𝟏𝟏𝑇𝑇]𝑇𝑇  and  𝐼𝐼  is the identity  matrix.  
Here, we convert the lower and  upper bounds of  𝑓𝑓  to be  linear  
inequality constraints.  Moreover,  𝟏𝟏𝑇𝑇𝑓𝑓 = 𝐵𝐵𝑞𝑞  is  equivalent to  
‖𝑓𝑓‖1 = 𝐵𝐵𝑞𝑞  because  entries in  𝑓𝑓  are all non-negative values.  
Hence,  the formulation  becomes  a standard quadratic  
programming (QP) p roblem, which  can  now  be  solved by  the  
interior-point method  [39,40].  First, we  form  the Lagrangian  
function  for  the  above  problem,  i.e.,  
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1 
𝐿𝐿(𝑓𝑓, 𝑦𝑦, 𝑧𝑧) = 𝑓𝑓𝑇𝑇𝑄𝑄𝑇𝑇𝑄𝑄𝑓𝑓 − 𝑓𝑓𝑇𝑇(𝜆𝜆 𝑄𝑄𝑇𝑇 + 𝜆𝜆 𝐼𝐼)𝑠𝑠 

2 1 2  

−𝑦𝑦�𝟏𝟏𝑇𝑇𝑓𝑓 − 𝐵𝐵 𝑇𝑇
𝑞𝑞� − 𝑧𝑧 (𝐶𝐶𝑓𝑓 − 𝑑𝑑),       (18)  

 
where  𝑦𝑦  and  𝑧𝑧  are  the vectors  of  Lagrange multipliers.  Then  
the  Karush-Kuhn-Tucker (KKT)  conditions  [55] can be stated  
as  follows,  
 

𝑄𝑄𝑇𝑇𝑄𝑄𝑓𝑓 − (𝜆𝜆 𝑄𝑄𝑇𝑇 + 𝜆𝜆 )𝑠𝑠 − 𝑦𝑦𝟏𝟏 − 𝐶𝐶𝑇𝑇1 2𝐼𝐼   𝑧𝑧 = 0,  
𝐶𝐶𝑓𝑓 − 𝑑𝑑 + 𝜏𝜏 = 0,  
𝟏𝟏𝑇𝑇𝑓𝑓 − 𝐵𝐵𝑞𝑞 = 0,  
𝑧𝑧𝑖𝑖𝜏𝜏𝑖𝑖 = 0, 𝑖𝑖 = 1,2, . . . , 𝑚𝑚,  
𝜏𝜏 ≥ 𝟎𝟎,  
𝑧𝑧 ≥ 𝟎𝟎,                    

(19)  
 
where  𝜏𝜏  is the  slack  vector that converts  inequality constraints  
to  equalities.  Then  we  define  the  residuals  as  follows,  
 

𝑟𝑟𝑑𝑑 = 𝑄𝑄𝑇𝑇𝑄𝑄𝑓𝑓 − (𝜆𝜆 𝑄𝑄𝑇𝑇 + 𝜆𝜆2𝐼𝐼 𝟏𝟏  𝐶𝐶𝑇𝑇1 )𝑠𝑠 − 𝑦𝑦  − 𝑧𝑧,  
𝑟𝑟𝑒𝑒𝑞𝑞 = 𝟏𝟏𝑇𝑇𝑓𝑓 − 𝐵𝐵𝑞𝑞 ,  
𝑟𝑟𝑖𝑖𝑛𝑛𝑒𝑒𝑞𝑞 = 𝐶𝐶𝑓𝑓 − 𝑑𝑑 + 𝜏𝜏,  
𝑟𝑟𝜏𝜏𝜏𝜏 = 𝛤𝛤𝑧𝑧,                   

(20)  
 
where  𝛤𝛤  is  the diagonal  matrix of  𝜏𝜏 .  In  a Newton step,  the  
changes  in  x,  𝜏𝜏,  y,  and  z,  are given  by,  
 

𝑄𝑄𝑇𝑇𝑄𝑄  𝟎𝟎 −𝟏𝟏 −𝐶𝐶𝑇𝑇 ∆𝑓𝑓 𝑟𝑟𝑑𝑑 

𝟏𝟏𝑇𝑇     𝟎𝟎  𝟎𝟎  𝟎𝟎 ∆𝜏𝜏 𝑟𝑟
� �� � � 𝑒𝑒𝑞𝑞   = −   �,    (21)  
𝐶𝐶        𝐼𝐼 𝟎𝟎      𝟎𝟎 ∆𝑦𝑦 𝑟𝑟𝑖𝑖𝑛𝑛𝑒𝑒𝑞𝑞 

𝟎𝟎        𝑍𝑍 𝟎𝟎      𝛤𝛤 ∆𝑧𝑧 𝑟𝑟𝜏𝜏𝜏𝜏 

 
where  𝑍𝑍  is  the  diagonal  matrix of  z.  We  update  𝑓𝑓𝑡𝑡+1 = 𝑓𝑓𝑡𝑡 + ∆𝑓𝑓  
for each iteration  until convergence.  Additionally, if a full  
Newton step is infeasible,  we shorten the step  to maintain  
positivity.  

However,  the number of  non-zero entries  in  𝑓𝑓  is not  
constrained with  𝑙𝑙1 -norm. Since we  restrict  𝑓𝑓  to  [0, 1], the  
solution will  give  us more than  𝐵𝐵𝑞𝑞  non-zero entries. Besides  
that,  since  we  are  only  interested  in  the  first  𝐵𝐵𝑞𝑞  samples,  we  do  
not want  non-selected samples to influence  the solution.  As  a  
result,  we modify  the  formulation  by introducing a parameter  𝜆𝜆  
in the  constraint,  i.e.,  

 
         𝑓𝑓 = arg min 1  𝑓𝑓𝑇𝑇𝑄𝑄𝑇𝑇𝑄𝑄𝑓𝑓 − 𝑓𝑓𝑇𝑇(𝜆𝜆1𝑄𝑄𝑇𝑇 + 𝜆𝜆2𝐼𝐼)𝑠𝑠, 

𝑓𝑓 2 

         𝑠𝑠. 𝑡𝑡. , 𝟏𝟏𝑇𝑇𝑓𝑓 = 𝜆𝜆𝐵𝐵𝑞𝑞 ,  𝐶𝐶𝑓𝑓 ≤ 𝑑𝑑,                                
(22)  
 
where we choose 𝜆𝜆  between  0 and 1. Decreasing  𝜆𝜆  will  
generate less non-zero entries in the solution.  We can adjust  𝜆𝜆  
so that the solution only contains  𝐵𝐵𝑞𝑞  non-zero  entries. This  
problem  can be  solved  by  using a simple  bisection algorithm  to 
iteratively search the proper  𝜆𝜆,  which is  illustrated  in Algorithm  
2.  We name this method as  sparse modeling via  quadratic  



  

 

programming (SMQP), which  uses quadratic programming  to 
solve the sparse modeling problem.  Usually, the optimal  
solution will  be achieved in no more  than 10 iterations  from our 
simulations.  
__________________________________________________  
Algorithm  2: SMQP                                     ______________     

Input:  original  uncertainty  score  𝑠𝑠,  similarity matrix  𝑄𝑄,  
labeled  set  𝐿𝐿,  pre-selected  unlabeled  set  𝑆𝑆𝑈𝑈 .  
Initialization:  Set  𝜆𝜆  =  0.5,  𝑙𝑙𝑙𝑙 = 0,  𝑢𝑢𝑙𝑙 = 1.   
Solve  𝑓𝑓  by  Eq.  (22).  
while  �𝑓𝑓� ≠ 𝐵𝐵𝑞𝑞0   

 do 
if  �𝑓𝑓� > 𝐵𝐵𝑞𝑞0   

 do 
        𝑢𝑢𝑙𝑙 = 𝜆𝜆.  
   else  
           𝑙𝑙𝑙𝑙 = 𝜆𝜆.  

end  if  
𝜆𝜆 = (𝑙𝑙𝑙𝑙 + 𝑢𝑢𝑙𝑙)/2.  
Solve  𝑓𝑓  by  Eq.  (22).  

end while  
Sort  𝑓𝑓  in descending order  and move  the  first  𝐵𝐵𝑞𝑞  indices  of 
𝑓𝑓  from  𝑆𝑆𝑈𝑈  to  𝐿𝐿.  
Output:  updated  labeled  set  𝐿𝐿.  

__________________________________________________  
 

V.  EXPERIMENTAL RESULTS AND ANALYSIS  

A.  Experiment  Setup  
We evaluate  our proposed method for classification  

problems on four  image datasets,  which are COIL-20  [25],  a 
subset of  MNIST  [27],  Cam-Trawl Fish  [28] and  Chute Fish  
[29].  The  information of  the  datasets  is  described in TABLE  I.  

TABLE I  
DATASET DESCRIPTION  

Name   # of samples   # of class 
 COIL-20  1440  20 

 MNIST (subset)  3000  10 
 Cam-Trawl Fish  1026  5 

 Chute Fish  5032  27 
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For each dataset, we split the  data into  4 parts:  seed  set  
(labeled set),  unlabeled set, validation set and testing  set,  
denoted as  𝐿𝐿,  𝑈𝑈,  𝑉𝑉,  𝑇𝑇, respectively.  𝐿𝐿  is used for training the  
initial  classifiers;  𝑈𝑈  is  treated as a data  pool for sample  
selection;  𝑉𝑉  is  used for parameter  tuning;  and  𝑇𝑇  is used for 
evaluating  the performance of the  re-trained classifiers.  For 
each dataset,  we split the data as follows: in each class, 3  
samples are used  as  the seed set; half  of the  samples  are used  as  
unlabeled  data; o ne quarter  of samples  are used  as the validation  
set and the remaining  samples  are used as the testing set. During  
each  experiment, the  data  is  split  randomly.   

For  each dataset,  two different  types of  feature extraction  
methods  are  adopted.  One is  based  on  the  traditional  extraction  
method and the  other  is  convolutional  neural  networks  (CNNs)  
based  [60].  For the traditional  extraction  method,  we resize and  
concatenate each sample image into one feature vector in  
dataset COIL-20 and MNIST, named as “concat” in  TABLE II;  

while for Cam-Trawl Fish  and  Chute Fish  datasets, we follow  
the bag-of-features  (BoF)  framework [26,31] based on two  
level codebook learning [ 30]. For the CNN based feature  
extraction method, we use  the output of pre-logits layer of 
inception-resnet-v2 [51] as  the feature vector  in  dataset  COIL-

    2  0,      Ca     m   - Tr    a  w   l    F ish  and  Chute  Fish; while  for  MNIST  dataset,  
we a dopt  the  architecture  of  two  convolutional  layers  followed  
by two fully connected layers in Tensorflow  official site  [54].  
Before extracting CNN  features,  we use transfer learning on  
each dataset to achieve better feature representation.  The 
feature space  used for the four datasets  is  summarized  in  TABLE 
II.   

Eight evaluation  methods  are  used in the  experiments: 1)  
BvSB [11],  which chooses  the  𝐵𝐵𝑞𝑞  samples based on top  highest  
uncertainty scores; 2)  RAND, which  randomly selects  𝐵𝐵𝑞𝑞  
samples for  a query; 3)  SMGS,  which is the  proposed  
approximated approach  using sparse  modeling via  greedy  
search; 4)  VS  [12], which incorporates  diversity  for a  query  via  
version space reduction;  5)  USDM  [13], which is uncertainty  
sampling  based  active  learning  with  diversity  maximization; 6) 
SMQP,  which is the  proposed approximated approach  using 
sparse  modeling via  quadratic programming; 7) MMC  [49],  
which is  active learning with maximum  model  change; 8)  EER  
[50],  which is  active  learning  with expected  error  reduction.   

For  the parameter settings,  we fix the cost  𝐶𝐶𝑝𝑝 = 1  in the  
SVM for all experiments.  Also, w e fix  𝑑𝑑thresh = 0.2  in the  
selective sampling  step for the sparse modeling.  We also set  
𝜆𝜆1 = 1  in the refinement of sparse modeling fixed.  Other  
parameters  are  empirically  tuned according  to the  performance  
in  the  validation  set  𝑉𝑉.  We  tune  the  standard deviation 𝜎𝜎  of  the 
similarity  matrix  𝑄𝑄  from  {0.25,  0.5,  1,  2},  𝜆𝜆2  in  the  refinement  
of sparse modeling from {0.1,1,5,10} and the  number of  
neighbors  card(𝑁𝑁𝑗𝑗)  of  𝑄𝑄  from  {5,10,20}.  

TABLE II  
FEATURE DESCRIPTION  

Name   Feature size 
 COIL-20 (concat)  1024 

 COIL-20 (CNN)  1536 
 MNIST (concat)  784 

 MNIST (CNN)  1024 
  Cam-Trawl Fish (BoF)  7168 
  Cam-Trawl Fish (CNN)  1536 

  Chute Fish (BoF)  7168 
  Chute Fish (CNN)  1536 

B.  Performance  Comparison  with  Different  Batch  Sizes  
We run  the  algorithms  with different batch sizes from 15 to 

105 with 15 increments for each experiment and report the  
average accuracy  for  all the  eight  methods.  We set  the s eed  size 
𝑐𝑐 = 3  in  this  experiment.  Each result  is  based on an average  of  
10  runs  of the same  setting.  Figure  4  compares  the performance  
of eight  active  learning algorithms for image classification on  
four datasets.  Generally,  SMQP and SMGS  outperform other  
methods. To be specific, SMQP gives  robust  results on different  
batch size  and  SMGS  also gives promising results. However,  
since no optimal solution is  guaranteed in  SMGS,  in  a few cases  



  SMQP classifier 
Correct   Wrong 

 USDM 
 classifier 

Correct  𝑎𝑎1  𝑎𝑎2  
 Wrong 𝑎𝑎3  𝑎𝑎4  

 

 

(a) COIL-20 (b) MNIST 

(c) Cam-Trawl Fish (d) Chute Fish 
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Fig. 4. Average accuracy with seed size 𝑐𝑐 = 3  on four  datasets using traditional features. 

the accuracy  of SMGS  is slightly lower than BvSB method,  
particularly for  Chute Fish  dataset when the  batch size is over  
75. For MMC and EER methods, although they are optimized 
for  sequential sample  selection, they are not taking advantage 
of  the  unlabeled pool  data  for  batch mode  settings.  We  can see 
in MNIST  dataset, they perform even worse than RAND.  This 
is  because the sequentially  selected  samples  in  MMC  and  EER 
have much  redundant  information which gives  little 
information for re-training the classifiers than random
selection.  As  for  VS method,  it also incorporates diversity in the  
experiment  design and use  version space  reduction  to deal  with 
binary problem. However,  the results show that there  is  no big 
improvement  than BvSB method.  A  possible reason is  that 
version space reduction may be not suitable for multi-class 
problems.  Generally, the performance of USDM  is  usually 
much better  with large batch size than  with  small batch size. 
This is  because USDM always tends to look for isolated distinct 
samples  at  the  first  few  selections,  which has  been discussed  in 
the  previous  sections. 

C. Performance  Comparison Using  Different  Features 
In this subsection,  we compare the performance of  eight 

 

TABLE III  
CONTINGENCY  TABLE FOR TWO  CLASSIFIERS  

active learning  methods related  to  CNN based features. Figure  
5  shows the experimental results on the four  datasets. More  
details about CNN feature representation can be found in  
TABLE II.  Since transfer learning is conducted on the dataset  
before  feature  extraction, the classifiers are more robust  with  
the same size of  seed  set  compared  to  using  traditional  features  
in the  previous subsection.  This  experiment demonstrates  that  
when a better feature is used, the performance of  an active  
learning algorithm  usually improves.  Same as before,  SMQP  
outperforms the other  competitors consistently  using different  
features.  When the batch size increases, the performances  
saturate among  several  different methods with robust  
classifiers.  

D. Performance  Comparison Using  Different  Seed  Sizes 
In this  subsection, we examine the impact  of  the seed  size by 

changing  𝑐𝑐 = 9  on  these four datasets. We keep  other  settings  
unchanged and  evaluate the performance  with the batch  sizes  
varying from 15 t o 105.  Both traditional  features and CNN  
features are used for complete comparison.  The results are  
shown in  Fig.  6  and Fig.  7.  From  the results,  we can  see that  the  
proposed methods are  consistently  favorable,  which further 
indicates that  leveraging the unlabeled  pool data does  help 
improve the  active learning  performance.  

E. Significance  Test  Analysis 
Since USDM  also incorporates diversity  in the  minimization, 

we  use  paired sign test to verify  whether SMQP has a  
significant  improvement  over  USDM.  For  each  testing  sample,  
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the outcome of the two classifiers have 4 possibilities: 1) both 
USDM and SMQP make correct predictions; 2) USDM makes 
a correct prediction while SMQP makes a wrong prediction; 3) 
SMQP makes a correct prediction while USDM makes a wrong 
prediction; 4) both USDM and SMQP make wrong predictions. 
We use a 2×2 contingency table to tabulate the outcomes of two 
classifiers on all testing samples, as follows. 

The null hypothesis 𝐻𝐻0 is that these two classifiers are the 
same while the alternate hypothesis 𝐻𝐻1 is that SMQP is better 
than USDM. The p-value is defined as the probability that the 
same as or more extreme cases than the actual observed results 
occur, when the null hypothesis is true. A smaller p-value 
means that SMQP classifier is more likely to be better than 
USDM classifier. The p-value can be formulated as follows, 

𝑝𝑝 = Pr(𝑋𝑋 ≥ 𝑎𝑎3) = 1 − Pr(𝑋𝑋 < 𝑎𝑎3) 
𝑎𝑎3−1�𝑎𝑎2+𝑎𝑎3�0.5𝑖𝑖 (1 − 0.5)𝑎𝑎2+𝑎𝑎3−𝑖𝑖 = 1 − ∑ . (23) 𝑖𝑖=0 𝑖𝑖 

https://en.wikipedia.org/wiki/Null_hypothesis
https://en.wikipedia.org/wiki/Null_hypothesis
https://en.wikipedia.org/wiki/Realization_(probability)


 

 

 
                               

 
                          

(a) COIL-20    (b) MNIST 

(c) Cam-Trawl Fish (d) Chute Fish 
Fig. 5. Average accuracy with seed size 𝑐𝑐 = 3  on four datasets using CNN features.  

 
                               

 

(a) COIL-20    (b) MNIST 

          (c) Cam-Trawl Fish                 (d) Chute Fish 
Fig. 6. Average accuracy with seed size 𝑐𝑐 = 9  on four  datasets using traditional features.  
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(c) Cam-Trawl Fish (d) Chute Fish 
Fig. 7. Average accuracy with seed size 𝑐𝑐 = 9 on four datasets using CNN features. 

P-VALUES BETWEEN SMQP AND USDM FOR FOUR DATASETS WITH DIFFERENT BATCH SIZES 

Bq 15 30 45 60 75 90 105 
COIL-20 (c) 3.37E-11 4.55E-15 0 9.83E-12 4.64E-03 1.90E-02 2.87E-02 
COIL-20 (3×c) 4.10E-04 2.31E-02 3.36E-02 8.13E-02 7.75E-02 6.40E-02 5.00E-01 
MNIST (c) 7.23E-10 0 0 0 0 0 0 
MNIST (3×c) 8.44E-09 3.44E-15 2.38E-12 7.77E-10 3.96E-08 1.18E-03 7.42E-02 
Cam-Trawl Fish (c) 7.69E-05 2.69E-04 4.55E-02 8.23E-02 8.68E-02 9.75E-02 5.00E-02 
Cam-Trawl Fish (3×c) 8.60E-03 1.10E-03 5.42E-03 5.39E-02 2.02E-02 5.63E-02 3.85E-02 
Chute Fish (c) 0 0 0 0 0 0 1.11E-16 
Chute Fish (3×c) 0 0 0 0 0 1.87E-08 1.51E-07 

We report all p-values based on the sign test between USDM 
and SMQP classifiers on four datasets using traditional features 
in Table IV. 

For SMQP method, the smaller the p-value is, the more 
significant the improvement is over USDM method. From the 
table, we can see that SMQP method has a significant 
improvement over USDM method especially for small batch 
size and seed number. With large batch size and seed number, 
some p-values are relatively large. This is because the classifier 
becomes more robust with the increase of the batch size and 
seed number. 

F. Performance Comparison of Data Transform in Similarity 
Matrix 

In this subsection, we examine the impact of the data 
transform in the construction of similarity matrix in Eq. (8). 
Taking BoF features on Cam-Trawl Fish dataset for example, 

we report the average accuracy with seed size 𝑐𝑐 = 3 in Fig. 8. 
The dashed line represents the result without data transform, 
i.e., we use the original features with Euclidean distance to 
construct the similarity in Eq. (7). On the contrary, the solid line 
shows the result with the data transform using Eq. (8). As 
expected, the result with data transform outperforms the one 
without data transform. This is because the transformed data 
can better describe the similarity relations among the samples. 

Recently, the negativity of data is analyzed [63] and 
simultaneously updated with the classifier since some negative 
samples may look more like positive samples than others. As a 
result, the negativity of samples is not equally weighted, which 
can be used as a good way for measuring the similarity among 
samples. This could be one direction about our future work. 

G. Effectiveness with Selective Sampling 
We take MNIST dataset as an example to show the 

effectiveness with selective sampling. As shown in blue dashed 



 

  
    

    
  

       
 

    
   

   
    

     
   

    
     
     
         

     
  

    
 

     
      

  
       

   
    

    
    

    
    

  
         

   
    

   
   

       
    

    
      

 

 
    

 
   

   
       

  
   

     
 

 
     

  
      

  
  

   
  

  
  

   
   

    
  

    

 
Fig. 8.  The performance comparison with and without data transform.  
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curve in Fig. 9, the average accuracy drops slightly without 
selective sampling. This is because the low uncertainty samples 
may have negative impact on the sparse representation. The 
most important effect of selective sampling is the ability of 
reducing the computation time, which is shown in Fig. 10. 

Fig.  9. The effectiveness of  selective sampling in MNIST dataset using  
concatenated features with  𝑐𝑐 = 3.  

H. Computational Efficiency Comparison 
Taking MNIST dataset as an example, we compare the 

computational efficiency of the sample selection process of 
nine methods which also includes SMQP without selective 
sampling. In this experiment, we vary the unlabeled pool size 
from 300 to 1500, with an interval of 300. All experiments are 
implemented by Matlab R2017b, which is installed on a 
machine with 4 core i7 and 32.0GB RAM. 

Figure 10 shows the elapsed time to select 15 data for 
labeling. We can see that except SMQP and USDM, the elapse 
time remains flat with the increase of the pool size. The dashed 
blue curve shows the elapsed time using SMQP without 
selective sampling. Compared with USDM, SMQP without 
selective sampling is computationally expensive since it also 
searches the optimal 𝜆𝜆 in the optimization. As for SMQP, it 
outperforms USDM in efficiency with the increase of pool size. 

This is because SMQP adopts selective sampling strategy that 
drops low uncertainty samples before the optimization. 

Fig. 10.  The elapsed time comparison.  

VI. CONCLUSION AND FUTURE WORK 

In this paper, a novel uncertainty sampling based active 
learning algorithm is proposed via sparse modeling. An 
approximated solution by greedy search method is achieved. 
Moreover, uncertainty, diversity and density are combined in 
the joint optimization after refinement of the sparse modeling. 
To overcome the ineffectiveness of solving 𝑙𝑙0-norm constraint 
of the sparse problem, a relaxation of 𝑙𝑙1-norm solution, SMQP, 
is provided by quadratic programming. Comprehensive 
experiments are conducted with regard to batch size, feature 
space, seed size, significant analysis, data transform and 
computational efficiency. There are two directions for future 
work. On one side, we will look for more effective ways to 
measure the similarity among samples, such as generating fine-
grained labels inspired from [63]. On the other side, we will 
focus on the sample selection methods when facing large-scale 
datasets. 
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