Optimum interpolation analysis of Aquarius sea surface salinity
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Optimum interpolation analysis of Aquarius sea surface salinity

Filetype[PDF-6.01 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Geophysical Research: Oceans
  • Personal Author:
  • Description:
    A new high-resolution sea surface salinity (SSS) analysis has been produced using Aquarius satellite observations from September 2011 to June 2015. The motivation for the new product is twofold: to produce Level-4 SSS analysis that is consistent with existing in situ observations such as from Argo profile data, and to reduce the large-scale satellite biases that have existed in all versions of the standard Level-3 Aquarius products. The new product is a weekly SSS analysis on a nearly global 0.5° grid. The analysis method is optimum interpolation (OI) that takes into account analyzed errors of the observations, specific to the Aquarius instrument. The method also includes a large-scale correction for satellite biases, filtering of along-track SSS data prior to OI, and the use of realistic correlation scales of SSS anomalies. All these features of the analysis are shown to result in more accurate SSS maps. In particular, the method reduces the effects of relative biases between the Aquarius beams and eliminates most of the large-scale, space-varying, and time-varying satellite biases relative to in situ data, including spurious annual signals. Statistical comparison between the weekly OI SSS maps and concurrent buoy data demonstrates that the global root-mean-square error of the analysis is smaller than 0.2 pss for nearly all weeks over the ∼4 year period of comparison. The utility of the OI SSS analysis is also exemplified by the derived patterns of regional SSS variability.
  • Keywords:
  • Source:
    Journal of Geophysical Research: Oceans, 121(1), 602-616
  • DOI:
  • ISSN:
    2169-9275;2169-9291;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    CHORUS
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1