An Efficient Ensemble Technique for Hydrologic Forecasting Driven by Quantitative Precipitation Forecasts
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

An Efficient Ensemble Technique for Hydrologic Forecasting Driven by Quantitative Precipitation Forecasts

Filetype[PDF-4.23 MB]



Details:

  • Journal Title:
    Journal of Hydrometeorology
  • Personal Author:
  • Description:
    Uncertainty in quantitative precipitation forecasts (QPFs) from numerical weather prediction (NWP) models manifests in errors in the amounts of rainfall, storm structure, storm location, and timing, among other precipitation characteristics. In flash flood forecasting applications, errors in the QPFs can translate into significant uncertainty in forecasts of surface water flows and their impacts. In particular, the QPF errors in location and structure result in errors on flow paths, which can be highly detrimental in identifying locations susceptible to flash flood impacts. To account for this type of uncertainty, the neighboring pixel ensemble technique (NPET) was devised and implemented as a postprocessing algorithm of deterministic or ensemble outputs from a distributed hydrologic model. The aim of the technique is to address displaced hydrologic responses resulting from location biases in QPFs using a probabilistic approach. NPET identifies a sampling region surrounding each forecast pixel and builds an ensemble of surface water flow values considering the pixel’s physiographic similarities. The probabilistic information produced with NPET can be calibrated through a set of tunable parameters that are adjusted to account for NWP-specific QPF error characteristics. The utility of NPET is demonstrated for the Ellicott City flash flood event on 27 May 2018, using products and tools routinely used in the U.S. National Weather Service for warning operations. Results from this case demonstrate that NPET effectively conveys uncertainty information about QPF precipitation location in a hydrologic context.
  • Keywords:
  • Source:
    J. Hydrometeor., 24, 479–495
  • DOI:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1