Shading as a mitigation tool for coral bleaching in three common Indo-Pacific species
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Shading as a mitigation tool for coral bleaching in three common Indo-Pacific species

Filetype[PDF-1.32 MB]



Details:

  • Journal Title:
    Journal of Experimental Marine Biology and Ecology
  • Description:
    Shading substantially reduced the degree of bleaching in Acropora muricata, Pocillopora damicornis and Porites cylindrica in American Samoa. Experiments were conducted outdoors at two sites on Ofu and Tutuila Islands. An aquarium experiment was set up near some reef-flat pools in the National Park of American Samoa on Ofu Island, using different levels of shading (none, 50% and 75%) early in conditions of cumulative thermal stress corresponding to NOAA's Coral Reef Watch-Bleaching Alert System. We analyzed the effects of cumulative thermal stress regarding coral growth, as well as color changes (evaluated using a standardize reference card) as a proxy for decreases in symbiont density and chlorophyll a content (i.e. bleaching). Thermally stressed corals grew less than controls, but corals without shading experienced a more substantial decrease in growth compared to those under 50% or 75% shade. The analysis of coral color showed that both levels of shading were protective against bleaching in conditions of cumulative thermal stress for all species, but were particularly beneficial for the most sensitive ones: A. muricata and P. cylindrica. Heavier shading (75%) offered better protection than lighter shading (50%) in this experiment, possibly because of the intense light levels corals were subjected to. Although there were limits to the extent shading could mitigate the effects of cumulative heating, it was very effective to at least Degree Heating Week (DHW) 4 and continued to offer some protection until the end of the study (DHW 8). In Tutuila, a shaded/not-shaded platform experiment was carried out in a reef pool in which corals have shown repeated annual summer bleaching for several years. This experiment was designed to investigate if shading could attenuate bleaching in the field and also if there were negative consequences to shading removal. The only factor controlled was light intensity, and our main conclusion was that overall corals on the platform became darker than field colonies in response to shading, but adjusted back to the same color level as field colonies after shade removal. However, the latter results are preliminary and need to be confirmed by future studies under more controlled conditions. As bleaching becomes more frequent and regular due to global warming, we should consider proactively using shading to help mitigate the effects of thermal stress and prolong the survival of at least some coral communities, until solutions to address global climate change become effective.
  • Source:
    Journal of Experimental Marine Biology and Ecology, 497: 152-163
  • Document Type:
  • Place as Subject:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    CHORUS
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26