U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Remote sensing of the cyanobacteria life cycle: A mesocosm temporal assessment of a Microcystis sp. bloom using coincident unmanned aircraft system (UAS) hyperspectral imagery and ground sampling efforts

Supporting Files


Details

  • Journal Title:
    Harmful Algae
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Remote sensing technologies offer a consistent, spatiotemporal approach to assess water quality, which includes the detection, monitoring, and forecasting of cyanobacteria harmful algal blooms. In this study, a series of ex-situ mesoscale experiments were conducted to first develop and then monitor a Microcystis sp. bloom using a hyperspectral sensor mounted on an unmanned aircraft system (UAS) along with coincident ground sampling efforts including laboratory analyses and in-situ field probes. This approach allowed for the simultaneous evaluation of both bloom physiology (algal growth stages/life cycle) and data collection method on the performance of a suite of 41 spectrally-derived water quality algorithms across three water quality indicators (chlorophyll a, phycocyanin and turbidity) in a controlled environment. Results indicated a strong agreement between Lab and Field-based methods for all water quality indicators independent of growth phase, with regression R2-values above 0.73 for mean absolute percentage error (MAPE) and 0.87 for algorithm R2 values. Three of the 41 algorithms evaluated met predetermined performance criteria (MAPE and algorithm R2 values); however, in general, algal growth phase had a substantial impact on algorithm performance, especially those with blue and violet wave bands. This study highlights the importance of co-validating sensor technologies with appropriate ground monitoring methods to gain foundational knowledge before deploying new technologies in large-scale field efforts.
  • Keywords:
  • Source:
    Harmful Algae, 117, 102268
  • DOI:
  • ISSN:
    1568-9883
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY-NC-ND
  • Compliance:
    Submitted
  • Main Document Checksum:
    urn:sha256:d65bc74fa70a143904eaa740312046930ad3405a365bc3e93c3fe49e0c623e7d
  • Download URL:
  • File Type:
    Filetype[PDF - 4.80 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.