U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Distinct Mechanisms of Decadal Subsurface Heat Content Variations in the Eastern and Western Indian Ocean Modulated by Tropical Pacific SST



Details

  • Journal Title:
    Journal of Climate
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Decadal variability of the subsurface ocean heat content (OHC) in the Indian Ocean is investigated using a coupled climate model experiment, in which observed eastern tropical Pacific sea surface temperature (EPSST) anomalies are specified. This study intends to understand the contributions of external forcing relative to those of internal variability associated with EPSST, as well as the mechanisms by which the Pacific impacts Indian Ocean OHC. Internally generated variations associated with EPSST dominate decadal variations in the subsurface Indian Ocean. Consistent with ocean reanalyses, the coupled model reproduces a pronounced east–west dipole structure in the southern tropical Indian Ocean and discontinuities in westward-propagating signals in the central Indian Ocean around 100°E. This implies distinct mechanisms by which the Pacific impacts the eastern and western Indian Ocean on decadal time scales. Decadal variations of OHC in the eastern Indian Ocean are attributed to 1) western Pacific surface wind anomalies, which trigger oceanic Rossby waves propagating westward through the Indonesian Seas and influence Indonesian Throughflow transport, and 2) zonal wind anomalies over the central tropical Indian Ocean, which trigger eastward-propagating Kelvin waves. Decadal variations of OHC in the western Indian Ocean are linked to conditions in the Pacific via changes in the atmospheric Walker cell, which trigger anomalous wind stress curl and Ekman pumping in the central tropical Indian Ocean. Westward-propagating oceanic Rossby waves extend the influence of this anomalous Ekman pumping to the western Indian Ocean.
  • Keywords:
  • Source:
    Journal of Climate, 31(19), 7751-7769
  • DOI:
  • Document Type:
  • Funding:
  • Place as Subject:
  • Rights Information:
    Other
  • Compliance:
    CHORUS
  • Main Document Checksum:
    urn:sha256:972ec8210a7e1170aad4adedfadfeacd48563b8d96e951041e16f34bca2cd89e
  • Download URL:
  • File Type:
    Filetype[PDF - 4.35 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.