Atmospheric Origins of Variability in the South Atlantic Meridional Overturning Circulation
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Atmospheric Origins of Variability in the South Atlantic Meridional Overturning Circulation

Filetype[PDF-2.70 MB]



Details:

  • Journal Title:
    Journal of Climate
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Insights from the RAPID–MOCHA observation network in the North Atlantic have motivated a recent focus on the South Atlantic, where water masses are exchanged with neighboring ocean basins. In this study, variability in the South Atlantic meridional overturning circulation (SAMOC) at 34°S is attributed to global atmospheric forcing using an inverse modeling approach. The sensitivity of the SAMOC to atmospheric state variables is computed with the adjoint of the Massachusetts Institute of Technology general circulation model, which is fit to 20 years of observational data in a dynamically consistent framework. The dynamical pathways highlighted by these sensitivity patterns show that the domain of influence for the SAMOC is broad, covering neighboring ocean basins even on short time scales. This result differs from what has previously been shown in the North Atlantic, where Atlantic meridional overturning circulation (AMOC) variability is largely governed by dynamics confined to that basin. The computed sensitivities are convolved with surface atmospheric state variability from ERA-Interim to attribute the influence of each external forcing variable (e.g., wind stress, precipitation) on the SAMOC from 1992 to 2011. Here, local wind stress perturbations are shown to dominate variability on seasonal time scales while buoyancy forcing plays a minor role, confirming results from past forward perturbation experiments. Interannual variability, however, is shown to have originated from remote locations across the globe, including a nontrivial component originating from the tropical Pacific. The influence of atmospheric forcing emphasizes the importance of continuous widespread observations of the global atmospheric state for attributing observed AMOC variability.
  • Keywords:
  • Source:
    Journal of Climate, 32(5), 1483-1500
  • DOI:
  • Document Type:
  • Funding:
  • Place as Subject:
  • Rights Information:
    CC BY
  • Compliance:
    CHORUS
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1