Improvements in Hurricane Intensity Forecasts from a Multimodel Superensemble Utilizing a Generalized Neural Network Technique
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Improvements in Hurricane Intensity Forecasts from a Multimodel Superensemble Utilizing a Generalized Neural Network Technique

Filetype[PDF-1.58 MB]



Details:

  • Journal Title:
    Weather and Forecasting
  • Description:
    Forecasting tropical storm intensities is a very challenging issue. In recent years, dynamical models have improved considerably. However, for intensity forecasts more improvement is necessary. Dynamical models have different kinds of biases. Considering a multimodel consensus could eliminate some of the biases resulting in improved intensity forecasts as compared to the individual models. Apart from the ensemble mean, the construction of multimodel consensuses has always contributed to somewhat improved forecasts. The Florida State University (FSU) multimodel superensemble is one that, over the years, has systematically provided improved forecasts for hurricanes, numerical weather prediction, and seasonal climate forecasts. The present study considers an artificial neural network (ANN), based on biological principles, for the construction of a multimodel ensemble. ANN has been used for constructing multimodel consensus forecasts for tropical cyclone intensities. This study uses the generalized regression neural network (GRNN) method for the construction of consensus intensity forecasts for the Atlantic basin. Hurricane seasons 2012–16 are considered. Results show that with only five input models improved guidance for tropical storm intensities may be obtained. The consensus using GRNN mostly outperforms all the models included in the study and the ensemble mean. Forecast errors at the longer forecast leads are considerably less for this multimodel superensemble based on the generalized regression neural network. The skill and correlations of different models along with the developed consensus are provided in our analysis. Results suggest that this consensus forecast may be used for operational guidance and for planning and emergency evacuation management. Possibilities for future improvements of the consensus based on new advances in statistical algorithms are also indicated.
  • Source:
    Weather and Forecasting, 33(3), 873-885
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    CHORUS
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26