Factors affecting detection efficiency of mobile telemetry Slocum gliders
-
2017
-
Details
-
Journal Title:Animal Biotelemetry
-
Personal Author:
-
NOAA Program & Office:
-
Description:Background: Acoustic biotelemetry sensors have been fully integrated into a broad range of mobile autonomous platforms; however, estimates of detection efficiency in different environmental conditions are rare. Here, we examined the role of environmental and vehicle factors influencing detection range for two common acoustic receivers, the VEMCO mobile transceiver (VMT) and a VEMCO cabled receiver (VR2c) aboard a Teledyne Slocum glider. We used two gliders, one as a mobile transmitting glider and one as a mobile receiving glider during the fall in the mid-Atlantic coastal region.
Results: We found distance between gliders, water depth, and wind speed were the most important factors influencing the detection efficiency of the VMT and the VR2c receivers. Vehicle attitude and orientation had minimal impacts on detection efficiency for both the VMT and VR2c receivers, suggesting that the flight characteristics of the Slocum glider do not inhibit the detection efficiency of these systems. The distance for 20% detection efficiency was approximately 0.4 and 0.6 km for the VMT and VR2c, respectively. The VR2c receivers had significantly lower detection efficiencies than the VMT receiver at distances <0.1 km, but higher detection efficiencies than the VMT at distances >0.1 km.
Conclusions: Slocum gliders are effective biotelemetry assets that serve as sentinels along important animal migration corridors. These gliders can help elucidate the relationships between telemetered organisms and in situ habitat. Therefore, estimating the detection ranges of these common telemetry instruments provides an important metric for understanding the spatial scales appropriate for habitat selection inferences.
-
Keywords:
-
Source:Anim Biotelemetry 5, 14
-
DOI:
-
Document Type:
-
Funding:
-
Rights Information:CC BY
-
Compliance:CHORUS
-
Main Document Checksum:urn:sha256:c32c59f77ccf8c0047e8f55d6cfec800af2384742aa0822fe25820e2771b3736
-
Download URL:
-
File Type:
ON THIS PAGE
The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles,
guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the
NOAA IR retains documents in their original published format to ensure public access to scientific information.
You May Also Like
COLLECTION
National Ocean Service (NOS)