i
The role of ligand-gated chloride channels in behavioural alterations at elevated CO2 in a cephalopod
-
2021
-
-
Source: J Exp Biol (2021) 224 (13): jeb242335
Details:
-
Journal Title:Journal of Experimental Biology
-
Personal Author:
-
NOAA Program & Office:
-
Description:Projected future carbon dioxide (CO2) levels in the ocean can alter marine animal behaviours. Disrupted functioning of γ-aminobutyric acid type A (GABAA) receptors (ligand-gated chloride channels) is suggested to underlie CO2-induced behavioural changes in fish. However, the mechanisms underlying behavioural changes in marine invertebrates are poorly understood. We pharmacologically tested the role of GABA-, glutamate-, acetylcholine- and dopamine-gated chloride channels in CO2-induced behavioural changes in a cephalopod, the two-toned pygmy squid (Idiosepius pygmaeus). We exposed squid to ambient (∼450 µatm) or elevated (∼1000 µatm) CO2 for 7 days. Squid were treated with sham, the GABAA receptor antagonist gabazine or the non-specific GABAA receptor antagonist picrotoxin, before measurement of conspecific-directed behaviours and activity levels upon mirror exposure. Elevated CO2 increased conspecific-directed attraction and aggression, as well as activity levels. For some CO2-affected behaviours, both gabazine and picrotoxin had a different effect at elevated compared with ambient CO2, providing robust support for the GABA hypothesis within cephalopods. In another behavioural trait, picrotoxin but not gabazine had a different effect in elevated compared with ambient CO2, providing the first pharmacological evidence, in fish and marine invertebrates, for altered functioning of ligand-gated chloride channels, other than the GABAAR, underlying CO2-induced behavioural changes. For some other behaviours, both gabazine and picrotoxin had a similar effect in elevated and ambient CO2, suggesting altered function of ligand-gated chloride channels was not responsible for these CO2-induced changes. Multiple mechanisms may be involved, which could explain the variability in the CO2 and drug treatment effects across behaviours.
-
Keywords:
-
Source:J Exp Biol (2021) 224 (13): jeb242335
-
DOI:
-
Document Type:
-
Rights Information:Other
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: