Table S1. Studies that have investigated the mechanism of action of gabazine in molluscs. All studies in molluscs have been done in gastropod molluscs. Target receptor: ion? = unknown which ion(s) the receptor is permeable to, hyper/depolarising? = unknown whether activation of the receptor results in hyperpolarisation (inhibitory) or depolarisation (excitatory). Administration method: bath application = animal/tissue/neuron sitting in the solution. Gabazine effect: the effect of gabazine on the behaviour measured or electrophysiological recording (neurotransmitter-induced hyper or depolarisation): - = no effect, \times = completely blocked, ψ = decrease, \uparrow = increase.

Target receptor	Species Common name	Life stage	Gabazine conc. (uM)	Administration method	Method of measurement	Gabazine effect	Reference
Ionotropic GABA R (Cl-, hyper/depolarising?)	<i>Tritia obsoleta</i> Marine mud snail	Larvae	0.1, 1, 10, 100	Bath application	<i>In vivo</i> Percentage of larvae metamorphosing	-	Biscocho et al. (2018)
Ionotropic GABA R (ion?, hyperpolarising)	<i>Helix aspersa</i> Terrestrial snail	Not stated	10	Bath application then by micropipette	<i>In vitro</i> Electrophysiology	×	Vehovszky et al. (1989)
Ionotropic GABA R (ion?, depolarising)	<i>Helix aspersa</i> Terrestrial snail	Not stated	10	Bath application then by micropipette	<i>In vitro</i> Electrophysiology	\downarrow	Vehovszky et al. (1989)
GABA R (type unknown)	obsoletus		1, 10	Bath application	In vivo Percentage of larvae	- 	Welch (2015)
	Eastern mud snail (marine)		100, 1,000		metamorphosing		

Table S2. Studies that have investigated the mechanism of action of picrotoxin in molluscs. All studies are in gastropod molluscs, apart from one study in a cephalopod mollusc (Chichery and Chichery, 1985). Target receptor: ion? = unknown which ion(s) the receptor is permeable to, hyper/depolarising? = unknown whether activation of the receptor results in hyperpolarisation (inhibitory) or depolarisation (excitatory). Administration method: superfusion = continuous flow over the outside of the tissue/neuron, perfusion = continuous flow through the tissue/neuron, bath application = animal/tissue/neuron sitting in the solution. Picrotoxin effect: The effect of picrotoxin on the behaviour measured or the electrophysiological recording (neurotransmitter-induced hyper or depolarisation): - = no effect, X = completely blocked, ψ = decrease, \uparrow = increase.

Click here to download Table S2

Table S3. Explanatory variables, distribution family and link function as well as the priors used for the chosen model of each response variable in the gabazine experiment. Explanatory variables: * = interactive effect, + = additive effect. Priors: - = priors not applicable for this parameter, improper uniform = improper uniform priors were used (= uniform priors from infinity to -infinity).

Response variable	Explanatory variables	Family (link)	Intercept prior	Slope prior	sigma prior	shape prior
Time in Zone A (s)	CO2 * Drug	Gaussian (identity)	student_t(3, 316, 458.1)	improper uniform	student_t(3, 0, 458.1)	-
No. of visits to Zone A	CO2 * Drug + Mantle length	Negative binomial (log)	student_t(3, 1.4, 2.5)	improper uniform	-	gamma(0.01, 0.01)
Proportion of squid that touched mirror softly	CO2 * Drug	Binomial (logit)	student_t(3, 0, 2.5)	improper uniform	-	-
Latency to first soft mirror touch (s)	CO2 * Drug	Gamma (log)	student_t(3, 3.7, 2.5)	improper uniform	-	gamma(0.01, 0.01)
No. of soft mirror touches	CO2 * Drug + Behavioural tank + Time of test	Negative binomial (log)	student_t(3, 2.9, 2.5)	improper uniform	-	gamma(0.01, 0.01)
Proportion of squid that touched mirror aggressively	CO2 * Drug	Binomial (logit)	student_t(3, 0, 2.5)	improper uniform	-	-
Latency to first aggressive mirror touch (s)	CO2 * Drug + Behavioural tank + Time of test	Gamma (log)	student_t(3, 3.7, 2.5)	improper uniform	-	gamma(0.01, 0.01)
No. of aggressive mirror touches	CO2 * Drug	Negative binomial (log)	student_t(3, 2.9, 2.5)	improper uniform	-	gamma(0.01, 0.01)
Active time (s)	CO2 * Drug	Gamma (log)	student_t(3, 5.3, 2.5)	improper uniform	-	gamma(0.01, 0.01)
Total distance moved (cm)	CO2 * Drug	Gamma (log)	student_t(3, 6, 2.5)	improper uniform	-	gamma(0.01, 0.01)
Average speed (cm/s)	CO2 * Drug	Gaussian (identity)	student_t(3, 2.1, 2.5)	improper uniform	student_t(3, 0, 2.5)	-

Table S4. Explanatory variables, distribution family and link function as well as the priors used for the chosen model of each response variable in the picrotoxin experiment. Explanatory variables: * = interactive effect, + = additive effect. Priors: - = priors not applicable for this parameter, improper uniform = improper uniform priors were used (= uniform priors from infinity to -infinity).

Response variable	Explanatory variables	Family(link)	Intercept	Slope	sigma	shape
Time in Zone A (s)	CO2 * Drug + Behavioural tank + Time of test	Gaussian (identity)	student_t(3, 677, 315.8)	improper uniform	student_t(3, 0, 315.8)	-
No. of visits to Zone A	CO2 * Drug + System	Negative binomial (log)	normal(0, 8)	normal(0, 2.5)	-	gamma(0.01, 0.01)
Proportion of squid that touched mirror softly	CO2 * Drug	Binomial (logit)	student_t(3, 0, 2.5)	improper uniform	-	-
Latency to first soft mirror touch (s)	CO2 * Drug	Gamma (log)	student_t(3, 4.4, 2.5)	improper uniform	-	gamma(0.01, 0.01)
No. of soft mirror touches	CO2 * Drug + Mantle length	Negative binomial (log)	student_t(3, 2.8, 2.5)	improper uniform	-	gamma(0.01, 0.01)
Proportion of squid that touched mirror aggressively	CO2 * Drug	Binomial (logit)	student_t(3, 0, 2.5)	improper uniform	-	-
Latency to first aggressive mirror touch (s)	CO2 * Drug + System	Gamma (log)	normal(0, 10)	normal(0, 2.5)	-	gamma(0.01, 0.01)
No. of aggressive mirror touches	CO2 * Drug + Number of acclimation days + Date introduced to treatment tank	Negative binomial (log)	student_t(3, 3.1, 2.5)	improper uniform	-	gamma(0.01, 0.01)
Active time (s)	CO2 * Drug	Gaussian (identity)	student_t(3, 297.8, 206.5)	improper uniform	student_t(3, 0, 206.5)	-
Total distance moved (cm)	CO2 * Drug	Gaussian (identity)	student_t(3, 737.1, 641.1)	improper uniform	student_t(3, 0, 641.1)	-
Average speed (cm/s)	CO2 * Drug	Gaussian (identity)	student_t(3, 2.4, 2.5)	improper uniform	student_t(3, 0, 2.5)	-

References

- Arshavsky, Y. I., Deliagina, T., Gamkrelidze, G., Orlovsky, G., Panchin, Y. V., Popova, L. and Shupliakov, O. (1993). Pharmacologically induced elements of the hunting and feeding behavior in the pteropod mollusk *Clione limacina*. I. Effects of GABA. *Journal of Neurophysiology* 69, 512-521.
- Biscocho, D., Cook, J. G., Long, J., Shah, N. and Leise, E. M. (2018). GABA is an inhibitory neurotransmitter in the neural circuit regulating metamorphosis in a marine snail. *Developmental Neurobiology* **78**, 736-753.
- Chichery, R. and Chichery, M.-P. (1985). Motor and behavioural effects induced by putative neurotransmitter injection into the optic lobe of the cuttlefish, Sepia officinalis. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology **80**, 415-419.
- Jing, J., Vilim, F. S., Wu, J.-S., Park, J.-H. and Weiss, K. R. (2003). Concerted GABAergic actions of *Aplysia* feeding interneurons in motor program specification. *Journal of Neuroscience* 23, 5283-5294.
- Magoski, N. S. and Bulloch, A. G. (1999). Dopamine activates two different receptors to produce variability in sign at an identified synapse. *Journal of Neurophysiology* 81, 1330-1340.
- Moccia, F., Di Cristo, C., Winlow, W. and Di Cosmo, A. (2009). GABA A-and AMPA-like receptors modulate the activity of an identified neuron within the central pattern generator of the pond snail *Lymnaea stagnalis*. *Invertebrate Neuroscience* **9**, 29-41.
- Norekian, T. P. and Satterlie, R. A. (1993). FMRFamide and GABA produce functionally opposite effects on prey-capture reactions in the pteropod mollusk *Clione limacina*. *The Biological Bulletin* **185**, 248-262.
- Norekian, T. P. (1999). GABAergic excitatory synapses and electrical coupling sustain prolonged discharges in the prey capture neural network of *Clione limacina*. Journal of Neuroscience 19, 1863-1875.
- Norekian, T. P. and Malyshev, A. Y. (2005). Coordinated excitatory effect of GABAergic interneurons on three feeding motor programs in the mollusk *Clione limacina*. Journal of Neurophysiology 93, 305-315.
- **Piggott, S. M., Kerkut, G. and Walker, R.** (1977). The actions of picrotoxin, strychnine, bicuculline and other convulsants and antagonists on the responses to acetylcholine glutamic acid and gamma-aminobutyric acid on *Helix* neurones. *Comparative Biochemistry and Physiology Part C: Comparative Pharmacology* **57**, 107-116.
- Rubakhin, S., Szücs, A. and Rozsa, K. (1996). Characterization of the GABA response on identified dialysed *Lymnaea* neurons. *General Pharmacology* 27, 731-739.
- Vehovszky, A., Bokisch, A. J., Krogsgaard-Larsen, P. and Walker, R. J. (1989). Pharmacological profile of gamma-aminobutyric acid (GABA) receptors of identified central neurones from *Helix aspersa*. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology **92**, 391-399.
- Welch, M. (2015). Where do Nitergic and GABAergic neurons lie in the metamorphic pathway of *Nassarius obsoletus*? *PhD thesis*, University of North Carolina at Greensboro, Greensboro, North Carolina.
- Wu, J.-S., Jing, J., Diaz-Rios, M., Miller, M. W., Kupfermann, I. and Weiss, K. R. (2003). Identification of a GABA-containing cerebral-buccal interneuron-11 in *Aplysia californica*. *Neuroscience Letters* **341**, 5-8.
- Yarowsky, P. and Carpenter, D. (1978a). A comparison of similar ionic responses to gamma-aminobutyric acid and acetylcholine. *Journal of Neurophysiology* 41, 531-541.

Yarowsky, P. and Carpenter, D. (1978b). Receptors for gamma-aminobutyric acid (GABA) on Aplysia neurons. Brain Research 144, 75-94.