Empirical evidence for frontal modifications of atmospheric boundary layer depth variability over land.
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Empirical evidence for frontal modifications of atmospheric boundary layer depth variability over land.

Filetype[PDF-6.93 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Applied Meteorology and Climatology
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Despite many observational studies on the atmospheric boundary layer (ABL) depth zi variability across various time scales (e.g., diurnal, seasonal, annual, and decadal), zi variability before, during, and after frontal passages over land, or simply zi variability as a function of weather patterns, has remained relatively unexplored. In this study, we provide an empirical framework using 5 years (2014–18) of daytime rawinsonde observations and surface analyses over 18 central and southeastern U.S. sites to report zi variability across frontal boundaries. By providing systematic observations of front-relative contrasts in zi (i.e., zi differences between warm and cold sectors,

    Δ

    z

    i

    =

    Warm

    −

    Cold

    ) and boundary layer moisture (i.e., ABL-q) regimes in summer and winter, we propose a new paradigm to study zi changes across cold-frontal boundaries. For most cases, we found deeper zi over the warm sector than the cold sector in both summer and winter, although with significant site-to-site variability in Δzi. Additionally, our results show a positive ΔqABL (i.e., frontal contrasts in ABL-q) in summer and winter, supporting what is typically observed in midlatitude cyclones. We found that a front-relative ΔqABL of 1 g kg−1 often yielded at least a 100-m Δzi across the frontal boundary in both summer and winter. This work provides a synoptic-scale basis for zi variability and establishes a foundation for model verification to examine the impact of airmass exchange associated with advection on zi. This work will advance our understanding of ABL processes in synoptic environments and help unravel sources of front-relative zi variability.

  • Keywords:
  • Source:
    Journal of Applied Meteorology and Climatology, 61(8), 1041-1063
  • DOI:
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1