U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Quantifying the probability and causes of the surprisingly active 2018 North Atlantic hurricane season

Supporting Files


Select the Download button to view the document
Please click the download button to view the document.

Details

  • Journal Title:
    Earth and Space Science
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The 2018 North Atlantic hurricane season was a destructive season with hurricanes Florence and Michael causing significant damage in the southeastern United States. In keeping with most destructive hurricane seasons, basinwide tropical cyclone activity was above average in 2018—by ~25% for named storm numbers, hurricane numbers, and Accumulated Cyclone Energy (ACE). In contrast to this above-normal activity, the August–September tropical environmental fields that explain ~50% of the variance in Atlantic basin hurricane activity between 1950 and 2017 anticipated a well below-average 2018 hurricane season. The surprisingly large mismatch between the observed and replicated levels of hurricane activity in 2018 is an extreme example of the uncertainty inherent in seasonal hurricane outlooks and highlights the need for these outlooks to be issued in terms of probability of exceedance. Such probabilistic information would better clarify the uncertainty associated with hurricane outlooks to the benefit of users. With retrospective knowledge of the August–September 2018 key tropical environmental fields, the chance that the observed 2018 Atlantic hurricane activity would occur is about 5%. The reasons for the surprisingly high hurricane activity in 2018 are a hurricane outbreak in early September and, in particular, the occurrence of unusually high tropical cyclone activity in the subtropical North Atlantic. The hyperactive subtropical activity was not anticipated because contemporary statistical models of seasonal Atlantic hurricane activity lack skill in anticipating subtropical ACE compared to tropical ACE.
  • Keywords:
  • Source:
    Earth and Space Science, 7, e2019EA000852
  • DOI:
  • Document Type:
  • Funding:
  • Place as Subject:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
    urn:sha256:81b1d603af1b982a74581bf78db62b359e8551081bf55fd948ddedb6c17279b1
  • Download URL:
  • File Type:
    Filetype[PDF - 35.72 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.