The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Improving Estimates of U.S. Tornado Frequency by Accounting for Unreported and Underrated Tornadoes
-
2022
-
-
Source: Journal of Applied Meteorology and Climatology, 61(7), 909-930
Details:
-
Journal Title:Journal of Applied Meteorology and Climatology
-
Personal Author:
-
NOAA Program & Office:
-
Description:Many tornadoes are unreported because of lack of observers or are underrated in intensity, width, or track length because of lack of damage indicators. These reporting biases substantially degrade estimates of tornado frequency and thereby undermine important endeavors such as studies of climate impacts on tornadoes and cost–benefit analyses of tornado damage mitigation. Building on previous studies, we use a Bayesian hierarchical modeling framework to estimate and correct for tornado reporting biases over the central United States during 1975–2018. The reporting biases are treated as a univariate function of population density. We assess how these biases vary with tornado intensity, width, and track length and over the analysis period. We find that the frequencies of tornadoes of all kinds, but especially stronger or wider tornadoes, have been substantially underestimated. Most strikingly, the Bayesian model estimates that there have been approximately 3 times as many tornadoes capable of (E)F2+ damage as have been recorded as (E)F2+ [(E)F indicates a rating on the (enhanced) Fujita scale]. The model estimates that total tornado frequency changed little over the analysis period. Statistically significant trends in frequency are found for tornadoes within certain ranges of intensity, pathlength, and width, but it is unclear what proportion of these trends arise from changes in damage survey practices. Simple analyses of the tornado database corroborate many of the inferences from the Bayesian model.
-
Keywords:
-
Source:Journal of Applied Meteorology and Climatology, 61(7), 909-930
-
DOI:
-
Document Type:
-
Funding:
-
Rights Information:Other
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: