The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Sub-Hinze scale bubble production in turbulent bubble break-up
-
2021
-
-
Source: Journal of Fluid Mechanics, 917, A40
Details:
-
Journal Title:Journal of Fluid Mechanics
-
Personal Author:
-
NOAA Program & Office:
-
Description:We study bubble break-up in homogeneous and isotropic turbulence by direct numerical simulations of the two-phase incompressible Navier–Stokes equations. We create the turbulence by forcing in physical space and introduce the bubble once a statistically stationary state is reached. We perform a large ensemble of simulations to investigate the effect of the Weber number (the ratio of turbulent and surface tension forces) on bubble break-up dynamics and statistics, including the child bubble size distribution, and discuss the numerical requirements to obtain results independent of grid size. We characterize the critical Weber number below which no break-up occurs and the associated Hinze scale dh . At Weber number close to stable conditions (initial bubble sizes d0≈dh ), we observe binary and tertiary break-ups, leading to bubbles mostly between 0.5dh and dh , a signature of a production process local in scale. For large Weber numbers ( d0>3dh ), we observe the creation of a wide range of bubble radii, with numerous child bubbles between 0.1dh and 0.3dh , an order of magnitude smaller than the parent bubble. The separation of scales between the parent and child bubble is a signature of a production process non-local in scale. The formation mechanism of these sub-Hinze scale bubbles relates to rapid large deformation and successive break-ups: the first break-up in a sequence leaves highly deformed bubbles which will break again, without recovering a spherical shape and creating an array of much smaller bubbles. We discuss the application of this scenario to the production of sub-Hinze bubbles under breaking waves.
-
Source:Journal of Fluid Mechanics, 917, A40
-
DOI:
-
Document Type:
-
Funding:
-
Rights Information:Other
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: