U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Genomic Assessment Of An Endemic Hawaiian Surgeonfish, Acanthurus Triostegus Sandvicensis, Reveals High Levels Of Connectivity And Fine-Scale Population Structure.



Details

  • Journal Title:
    Coral Reefs
  • Personal Author:
  • NOAA Program & Office:
  • Sea Grant Program:
  • Description:
    The Hawaiian Archipelago has served as a natural laboratory to assess genetic connectivity patterns across a broad spectrum of taxonomic and ecological diversity. Almost all these studies were based on a few targeted loci, but technologies now allow us to assess population structure with genomic coverage and greater resolution. Here, we provide a SNP-based analysis for an endemic surgeonfish, Acanthurus triostegus sandvicensis (manini) across the Hawaiian Archipelago and adjacent Johnston Atoll (N = 461). Based on 3649 SNPs, manini showed population structure in the main Hawaiian Islands, but genetic homogeneity across most of the northwestern extent of the archipelago (overall FST = 0.033, P < 0.001). Net migration occurred from Johnston Atoll into Hawai‘i, providing further support for Johnston Atoll being a pathway for dispersal (or colonization) into Hawai′i. These results highlight the higher efficacy of genomic sequencing to characterize fine-scale patterns of connectivity relative to a targeted loci approach and, moving forward, may invoke a reassessment of past connectivity studies in a genomics framework.
  • Keywords:
  • Source:
    Coral Reefs, Early Access
  • DOI:
  • Document Type:
  • Funding:
  • Place as Subject:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
    urn:sha256:b63f284b38236c607faac7911255dc5f444818f5595fdccc0d1a2b99c9a00674
  • Download URL:
  • File Type:
    Filetype[PDF - 975.48 KB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.