Eutrophication Drives Extreme Seasonal Co2 Flux In Lake Ecosystems
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Eutrophication Drives Extreme Seasonal Co2 Flux In Lake Ecosystems

Filetype[PDF-2.99 MB]



Details:

  • Journal Title:
    Ecosystems
  • Personal Author:
  • NOAA Program & Office:
  • Sea Grant Program:
  • Description:
    Lakes process a disproportionately large fraction of carbon relative to their size and spatial extent, representing an important component of the global carbon cycle. Alterations of ecosystem function via eutrophication change the balance of greenhouse gas flux in these systems. Without eutrophication, lakes are net sources of CO2 to the atmosphere, but in eutrophic lakes this function may be amplified or reversed due to cycling of abundant autochthonous carbon. Using a combination of high-frequency and discrete sensor measurements, we calculated continuous CO2 flux during the ice-free season in 15 eutrophic lakes. We found net CO2 influx over our sampling period in 5 lakes (− 47 to − 1865 mmol m−2) and net efflux in 10 lakes (328 to 11,755 mmol m−2). Across sites, predictive models indicated that the highest efflux rates were driven by nitrogen enrichment, and influx was best predicted by chlorophyll a concentration. Regardless of whether CO2 flux was positive or negative, stable isotope analyses indicated that the dissolved inorganic carbon pool was not derived from heterotrophic degradation of terrestrial organic carbon, but from degradation of autochthonous organic carbon, mineral dissolution, and atmospheric uptake. Optical characterization of dissolved organic matter revealed an autochthonous organic matter pool. CO2 influx was correlated with autochthony, while efflux was correlated with total nitrogen and watershed wetland cover. Our findings suggest that CO2 uptake by primary producers during blooms can contribute to continuous CO2 influx for days to months. Conversely, eutrophic lakes in our study that were net sources of CO2 to the atmosphere showed among the highest rates reported in the literature. These findings suggest that anthropogenic eutrophication has substantially altered biogeochemical processing of carbon on Earth.
  • Keywords:
  • Source:
    Ecosystems 24, 434–450
  • DOI:
  • Document Type:
  • Funding:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1