1 ว		
2 3 4	1	Eutrophication drives extreme seasonal CO ₂ flux in lake ecosystems
5 6	2	Running head: Eutrophication shapes lake CO ₂ flux
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	3	Ana M. Morales-Williams ^{1,2} , Alan D. Wanamaker, Jr. ³ , Clayton J. Williams ² , and John A.
	4	Downing ^{1,4}
	5	¹ Iowa State University, Department of Ecology, Evolution, and Organismal Biology, 251 Bessey
	6	Hall, Ames, IA, 50014, USA
	7	² University of Vermont, Rubenstein School of Environment and Natural Resources, Aiken
	8	Center, 81 Carrigan Dr., Burlington, VT, 05405
	9	³ Department of Geological and Atmospheric Science, Iowa State University, 12 Science 1,
	10	Ames, IA, 50011, USA
	11	⁴ Minnesota Sea Grant, University of Minnesota-Duluth, 31 West College St., Duluth, MN,
	12	55812, USA
	13	Corresponding Author: A.M. Morales-Williams, ana.morales@uvm.edu
	14	
35 36 37	15	
38 39 40 41 42 43 44 45 46	16	
	17	Author contributions: JAD and AMM conceived and designed the study. AMM performed
	18	research, analyzed data, and wrote the paper. ADW contributed methods and provided feedback
	19	on manuscript drafts. CJW analyzed data and provided feedback on manuscript drafts.
47 48	20	
49 50 51	21	
52 53	22	
54 55	23	
56 57 58		
59 60		1

24 Abstract

Lakes process a disproportionately large fraction of carbon relative to their size and spatial extent, representing an important component of the global carbon cycle. Alterations of ecosystem function via eutrophication change the balance of greenhouse gas (GHG) flux in these systems. Without eutrophication, lakes are net sources of CO_2 to the atmosphere, but in eutrophic lakes this function may be amplified or reversed due to cycling of abundant autochthonous carbon. Using a combination of high-frequency and discrete sensor measurements, we calculated continuous CO₂ flux during the ice-free season in 15 eutrophic lakes. We found net CO₂ influx over our sampling period in 5 lakes (-47 to -1865 mmol m^{-2}) and net efflux in 10 lakes (328 to 11,755 mmol m^{-2}). Across sites, predictive models indicated that the highest efflux rates were driven by nitrogen enrichment, and influx was best predicted by chlorophyll a concentration. Regardless of whether CO₂ flux was positive or negative, stable isotope analyses indicated that the dissolved inorganic carbon (DIC) pool was not derived from heterotrophic degradation of terrestrial organic carbon, but from degradation of autochthonous organic carbon, mineral dissolution, and atmospheric uptake. Optical characterization of dissolved organic matter (DOM) revealed an autochthonous organic matter pool. CO₂ influx was correlated with autochthony, while efflux was correlated with total nitrogen and watershed wetland cover. Our findings suggest that CO₂ uptake by primary producers during blooms can contribute to continuous CO₂ influx for days to months. Conversely, eutrophic lakes in our study that were net sources of CO₂ to the atmosphere showed among the highest rates reported in literature. These findings suggest that anthropogenic eutrophication has substantially altered biogeochemical processing of carbon on Earth.

46 Keywords: CO₂ flux, eutrophication, DOM, nitrogen

49

50

51

52

53

1

Ecosystems

2	
3	
1	
- -	
2	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
27 28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
<u>4</u> 0	
л о	
41 42	
+∠ ∕	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55	
50	
5/	
58	
59	

60

47 Manuscript highlights

• Five of 15 eutrophic lakes in this study were net CO₂ sinks, and influx was driven by indicators of autochthony, including chlorophyll a concentration and autochthonous dissolved organic matter.

• Nitrogen concentration and percent watershed wetland cover best predicted CO₂ efflux.

• Lakes that were net CO₂ sources reported here have substantially higher efflux rates than oligotrophic or mesotrophic lakes previously reported in the literature.

54 Introduction

55 Anthropogenic eutrophication is changing the role of lakes in the global carbon cycle. 56 Intensification of industrial agriculture has resulted in massive increases in fertilizer use and the 57 extent of irrigated cropland (Foley et al. 2005). Extensive cultivation alters watershed horizontal 58 permeability, and thus the rate, timing, concentration, and quality of inorganic nutrients and 59 dissolved organic matter (DOM) exported to downstream aquatic ecosystems (Foley et al. 2005; 60 Petrone et al. 2011; Williams et al. 2015). Collectively, these processes contribute to degradation of water quality, hypoxia, and harmful cyanobacteria blooms (Heisler et al. 2008; 61 62 Brooks et al. 2016). In the absence of eutrophication, inputs of terrestrial DOM to lakes fuel 63 heterotrophic respiration in excess of primary production (Pace and Prairie 2005; Duarte and Prairie 2005). Coupled with watershed inputs of inorganic carbon, this often results in positive 64 65 net CO₂ efflux from surface waters (Marcé et al., 2015; Weyhenmeyer et al., 2015; Wilkinson et al., 2016). Because a disproportionate amount of lake carbon research has been conducted in 66 67 northern temperate forested lakes (Sobek et al. 2005; Balmer and Downing 2011) relative to 68 eutrophic, agriculturally impacted systems, the generalization is sometimes made that lakes 69 function as sources of CO₂ to the atmosphere, that these rates are moderate (i.e., <50 mmol m⁻¹

day⁻¹), and that daytime influx is balanced or exceeded by diel respiratory flux (Kosten et al.
2010; López et al. 2011). This may not be true, however, of anthropogenically impacted aquatic
ecosystems.

Anthropogenically eutrophic freshwater ecosystems differ from less impacted lakes in watershed cultivation and development (Heathcote and Downing 2011), nutrient concentrations, primary productivity (Heisler et al. 2008; Pacheco et al. 2014), and DOM quality (Williams et al. 2015). These differences substantially alter how lakes process, store, and export carbon (Heathcote and Downing 2011; Pacheco et al. 2014; Nõges et al. 2016; Wilkinson et al. 2016). Lakes with agricultural and urban catchments have higher microbial processing rates of organic matter than those with forested watersheds, and a greater contribution of microbial-derived, protein-like compounds (Williams et al. 2010, 2015; Petrone et al. 2011) which tend to persist longer than DOM derived from higher plants (Kellerman et al. 2015). Coupled with elevated nutrient concentrations, this can correspond with inorganic C uptake by primary producers exceeding that produced via heterotrophic respiration resulting in sustained depletion of water column CO₂ (Morales-Williams et al. 2017). In the absence of large inputs of humic, terrestrial DOM of higher plant origin, it is unclear if exogenous CO_2 inputs and mineral dissolution can support net CO₂ efflux from surface waters when primary production is very high, as is expected in eutrophic and hypereutrophic lake ecosystems.

Dissolved inorganic carbon (DIC) in lake surface waters is primarily derived from mineral
dissolution and the bicarbonate buffering system, but is further mediated by a diversity of
sources including equilibration with the atmosphere, heterotrophic respiration, and watershed
inputs (Bade et al. 2004). The balance between CO₂ produced via these mechanisms and that
fixed by primary production affects the potential flux of CO₂ between the lake surface and the

Page 11 of 52

Ecosystems

י ר
2
3
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
18
19
20
21
22
23
23
24
25
26
27
28
29
30
31
32
33
34
35
26
50 77
3/
38
39
40
41
42
43
44
45
46
47
48
10
77 50
50
51
52
53
54
55
56
57
58
59
~ ~

60

93 atmosphere, though net flux is ultimately controlled by turbulence at the air-water interface 94 (Kling et al., 1992; Del Giorgio et al., 2009) and physical mixing events (i.e., gas release at fall 95 turnover). Thus, while high rates of primary production fix large quantities of inorganic carbon 96 during bloom events, the combined effects of processes that facilitate net efflux (heterotrophy, 97 mineral dissolution, physical mixing) may prevent eutrophic and hypereutrophic lakes from acting as net CO₂ sinks. Alternately, if inorganic carbon contributions from watershed sources 98 99 and heterotrophy are small relative to autochthonous carbon from primary production, eutrophic 100 lakes would be expected to maintain continuous negative flux (CO₂ flux into the lake) during periods of stable stratification. 101 The purpose of this study was to investigate the variability in magnitude and duration of 102 CO_2 flux in eutrophic and hypereutrophic lake ecosystems, and to assess the relative influence of 103 104 biological and physical parameters on CO₂ flux direction and rate. We assessed the source of 105 inorganic carbon pools and quality of dissolved organic matter across 15 eutrophic lakes using 106 stable isotopic and optical methods. Using high frequency pH and temperature measurements, 107 we calculated continuous CO₂ flux over one ice free season in these systems, and partitioned 108 variability in flux attributable to endogenous (i.e., primary production and autochthonous organic 109 matter) or exogenous (watershed inputs) sources. We hypothesized that periods of net CO_2 110 influx would be correlated with variables associated with endogenous biological mechanisms 111 and that net efflux would correlate with physical mixing and DIC sourced from mineral 112 dissolution rather than the degradation of terrestrial organic matter. 113 Materials and methods

114 Site selection and sampling design

2		
3 4	115	Fifteen eutrophic lakes were chosen along an orthogonal gradient of watershed
5 6	116	cultivation and interannual variability in Cyanobacteria dominance (Table 1, S1). These sites
7 8 9	117	were selected based on long-term survey data from 132 lakes monitored by the Iowa State
10 11	118	Limnology Laboratory between 2000 and 2010 (Ambient Lake Monitoring Program:
12 13	119	https://programs.iowadnr.gov/aquia/Programs/Lakes). All lakes in this study are relatively
14 15	120	shallow (<7 m max depth), and 13 of 15 are man-made. They are all algal-dominated systems
16 17 18	121	and do not have productive macrophyte communities. Eight lakes are classified as dimictic
19 20	122	(Arrowhead, Badger, Beeds, East Osceola, George Wyth, Keomah, Silver -Dickinson, and
21 22	123	Springbrook); seven are polymictic (Blackhawk, Center, Five Island, Orient, Lower Gar, Silver-
23 24 25	124	Palo Alto, and Rock Creek), though Silver-Dickinson did not stratify during our sampling season
25 26 27	125	(Figure 1). Lakes were sampled for standard biological, chemical, and physical parameters
28 29	126	during the ice-free season of 2012 once at ice out, twice per week in May and June, once per
30 31	127	week in July and August, and once per month until the onset of ice cover. Samples for DOM
32 33 34	128	characterization and stable isotope analysis of dissolved inorganic carbon ($\delta^{13}C_{DIC}$) were
35 36	129	collected once in April, at every second sampling event in May, June, July, and August, and at
37 38	130	every sampling event in September and November.
39 40	131	Water quality measurement and analysis
41 42 43	132	Lakes were sampled at the historic deep point (Table S1), which is the deepest point in

ep point (Table SI), wr est p ιp ep each lake based on historical bathymetry. These sites have been sampled regularly by state monitoring programs for >15 years, so have been used here for consistency. If a thermocline was present (based on visual inspection of plotted thermal profile data at the time of sampling, YSI multiparameter sonde), integrated upper mixed zone water column samples were collected above the thermocline to a maximum 2 m depth using a vertical column sampler. If no thermocline was

Page 13 of 52

Ecosystems

138	present, 2 m integrated column samples were collected unless the lake was < 2 m deep, in which
139	case samples were collected 0.5 m above maximum depth so as not to disturb the sediment.
140	Samples were stored in coolers on ice until delivery to the laboratory within 24 hours of
141	collection, then kept at 4°C and processed to a stable state or analyzed fully within 36 hours of
142	collection. Total phosphorus (TP), dissolved organic carbon (DOC), and alkalinity (as mg L-1
143	CaCO ₃) were analyzed using standard APHA methods (2012). Chlorophyll <i>a</i> samples were
144	filtered onto GF/C filters, frozen, then sonicated and extracted in cold acetone under red light
145	and analyzed fluorometrically (Arar and Collins 1997; Jeffrey et al. 1997). Total nitrogen (TN)
146	and nitrate (NO ₃ ²⁻) were analyzed using the second derivative method (Crumpton et al. 1989).
147	TN was analyzed as NO_3^{2-} after autoclave digestion with sodium hydroxide and persulfate.
148	Vertical profiles of dissolved oxygen (DO), specific conductivity, temperature, and pH were
149	measured with a YSI multi-parameter sonde.
150	High frequency pH and temperature sensors were deployed between 1.5 and 2 m depth at
151	the deep point of each lake (TempHion pH/ISE/redox sensor probes; accuracy: ± 0.2 °C; 0.2 pH
152	units; 0.1% mV). Measurements of pH and temperature were recorded every 15 minutes during
153	the ice free season (early April through late November 2012) in order to calculate continuous
154	CO_2 flux. For model calibration, discrete measurements of CO_2 were made at each sampling
155	event using a Vaisala GMT220 atmospheric probe modified for aquatic measurements (Johnson

atmospheric sensor with a custom made gas-permeable membrane sealed at the sensor base with plasti-dip. Continuous sensors were calibrated monthly and cleaned weekly at each sampling

et al. 2009). Using methods described and field tested in Johnson et al. (2009), we fitted the

event to remove any biofouling. Minimal biofouling did not affect sensor precision or rate of

- drift. The calibration re-set sensor drift and it's linearity in response to pH change. Continuous

sensor reported pH values were comparable and reliable within each lake and precise with
measurements made 15 minutes apart. After calibration, continuous sensor reported pH often
differed from that measured discretely with the YSI sonde. Here, we consider the YSI pH
estimate the true value and continuous sensor reported pH values were linearly adjusted to better
match YSI measurements (see data correction below and Plates S1-S15).

*High frequency data correction and CO*₂ *modeling*

Continuous, high frequency pH and temperature measurements were averaged by the hour for the full measurement period (Plates S1-S15). Hourly averaged temperature values were used in the pCO_2 calculation without further manipulation. Hourly averaged pH values were corrected for systematic error and drift by adjusting the pH values based on their deviation from the discrete pH measurements. The difference between hourly average and measured pH at each discrete sampling event was then linearly interpolated at an hourly interval between sampling events. The hourly interpolated pH difference was added to the hourly averaged, high frequency pH measurement. Next, for each lake, 90% confidence intervals were calculated for the adjusted pH values and pH values that fell outside the 90% confidence interval were removed. Finally, adjust pH values within the 90% confidence interval for each lake were visually checked by plotting the time series and adjusted pH values were manually removed if they deviated more than 1 pH unit from discrete value or they were noisy (rapid hour by hour bi-directional pH change). The final hourly averaged, adjusted pH values were used to calculate pCO_2 . The impact of these adjustments is displayed in the supplemental information (Plates S1-S15). All pH cleaning and adjustment steps took place in R using base packages (R Core Team 2015). Continuous aqueous pCO_2 was calculated based on carbonate equilibria using corrected hourly, adjusted pH and temperature data (Plates S1-S15), and linearly interpolated discrete

Page 15 of 52

Ecosystems

184	measurements of alkalinity and conductivity (Stumm & Morgan, 1996). Calculated pCO_2
185	generally overestimate measured pCO_2 in Iowa lakes (Plates S1-S15), which was also found in
186	Wisconsin lakes (Golub et al. 2017). To correct for this over estimation, calculated pCO_2 was
187	modeled with measured pCO_2 for each lake and this linear fit was used to predict pCO_2
188	concentration. For each model, the slope, intercept, coefficient of variation, root mean squared
189	error (RSME) and relative squared error (RSE) of the mean and median predicted value were
190	calculated (Table S2). RSE of the median varied widely across lakes, ranging from 7% for Silver
191	Lake (Dickinson) to 80% for Springbrook Lake. For all but three lakes, R ² was > 0.60 and RSE
192	of the median was < 38%. RSME ranged from 76 ppm for Center Lake to 267 ppm for Badger
193	Lake. Random error in the influence of high pH values on pCO_2 was not quantified in this study,
194	but the RSE of each predicted model tended to be higher than the combined systematic and
195	random error of 7.7% reported in Golub et al. (2017). This suggests that random measurement
196	error was likely not the main driver of error between measured and calculated pCO_2 . Given the
197	uncertainty around calculated pCO_2 concentrations, linear model predicted pCO_2 concentrations
198	were considered the best approximation of direct pCO_2 measurement (Plates S1-S15) and
199	predicted pCO_2 was used in this study to estimate flux.
200	Hourly flux was calculated as described in Balmer & Downing (2011) and Wilkinson et
201	al. (2016) using the equation
202	$F_{CO_{2(t)}} = (CO_{2(t)} - CO_{2(eq)}) * k_H) * k_{CO_{2(t)}} $ (1)

 $F_{CO_{2(t)}} = (CO_{2(t)} - CO_{2(eq)}) * k_H) * k_{CO_{2(t)}}$

where $CO_{2(t)}$ is the concentration of CO_2 in surface water at time t, CO_{2eq} is the average atmospheric equilibrium concentration at time of sampling in 2012 (393 ppm, NOAA Earth System Research Laboratory, http://www.esrl.noaa.gov/), k_H is the Henry's Law constant for CO₂ at time t, and $k_{CO2(t)}$ is the piston velocity. k_H was calculated using the equation

207	$e^{-58.0931 + 90.5069 \times \frac{100}{T_{emp}_{h2o(t)}} + 22.294 \times \log\left(\frac{T_{emp}_{h2o(t)}}{100}\right)}$		
208	where Temp_{h20} is water temperature (°K) at time <i>t</i> .		
209	$k_{CO2(t)}$ was calculated using the equation		
210	$k_{CO_{2(t)}} = \frac{2.07 + 0.215 \times wind(t)^{1.7}}{100} \times \left(\frac{1911 - 118.11 \times Temp_{h2o(t)} + 3.452 \times Temp_{h2o(t)}^{2} - 0.04132 \times Temp_{h2o(t)}^{3}}{600} \right)$		
211	where wind(t) is the wind speed (m/s) measured at a height of 10 m at a frequency of 1 to 10		
211	where wind(i) is the wind speed (m/s) measured at a height of 10 m at a frequency of 1 to 10		
212	minutes and average at an hourly time interval (<i>t</i>) (Wanninkhof 1992; Cole and Caraco 1998;		
213	Wilkinson et al. 2016). Wind data was downloaded from the MESONET network		
214	(http://mesonet.agron.iastate.edu/request/download.phtml?network=AWOS) for the nearest Iowa		
215	Automated Weather Observation System (IA-AWOS) to each lake. Because an atmospheric		
216	average was used (393 ppm, NOAA Earth System Research Laboratory,		
217	http://www.esrl.noaa.gov/), rather than direct, on-site measurements of atmospheric CO ₂ ,		
218	additional uncertainty exists for flux values close to atmospheric equilibrium.		
219			
220	Stable isotope analysis		
221	To characterize the source of the inorganic carbon pool, $\delta^{13}C_{DIC}$ samples were filtered in		
222	the field to 0.2 μ m and injected into helium gas-flushed septa-capped vials pre-charged with		
223	H ₃ PO ₄ to cease biological activity and to sparge CO ₂ (Raymond and Bauer 2001; Beirne et al.		
224	2012). Samples were measured via a Finnigan MAT Delta Plus XL mass spectrometer in		
225	continuous flow mode connected to a Gas Bench with a CombiPAL autosampler. Reference		
	10		

Page 17 of 52

1 2					
3 4	226	standards (NBS-19, NBS-18, and LSVEC) were used for isotopic corrections, and to assign the			
5 6	227	data to the appropriate isotopic scale. Average analytical uncertainty (analytical uncertainty and			
/ 8 9	228 average correction factor) was ± 0.06 ‰. Samples were analyzed by standard isotope ratio				
10 11	229	spectrometry methods (IRMS), and reported relative to the Vienna Pee Dee Belemnite in ‰			
12 13	230	(Equation 1).			
14 15 16	231	$\delta^{13}C_{\text{Sample}} = \left[(^{13}C/^{12}C)_{\text{sample}} / (^{13}C/^{12}C)_{\text{VPDB}} - 1 \right] \times 1000 $ Eq. 1			
17 18	232	DOM characterization			
19 20	$\frac{19}{20}$ 233 To assess the source and quality of DOM and concentration of DOC, water samples w				
 234 syringe filtered in the field using 0.2 µm pore size polycarbonate membrane filters (Millipo 232 234 paired with combusted GF/F pre-filters. A small volume of sample was passed through filter 					
					26 27
28 29	237	amber glass bottles, and stored on ice until returning to the lab, then stored at 4°C until analysis.			
 30 31 238 Samples were optically characterized by generating absorbance spectra and excitation-en 32 					
33 34	239	9 matrices (EEMs, Horiba Aqualog UV-Vis benchtop fluorometer/spectrophotometer).			
35 36	Absorbance scans (240 to 600 nm, 3 nm interval) and fluorescence EEMs (excitation: 240 to 6				
37 38 39	nm, 3 nm interval; emission 213.7 to 620.5 nm, 3.28 nm interval) were run simultaneously at a				
 40 242 fixed 5 nm bandpass. A Milli-Q water blank was run daily. Sample EEMs were correct 41 					
 inner filter effects and instrument bias and then blank subtracted (Cory et al. 2010; Willia al. 2010; Murphy et al. 2010). EEMs were standardized to Raman Units using the area un 		inner filter effects and instrument bias and then blank subtracted (Cory et al. 2010; Williams et			
		al. 2010; Murphy et al. 2010). EEMs were standardized to Raman Units using the area under the			
47 48	 40 47 245 Raman peak from the daily Milli-Q blank scan. 48 				
 ⁴⁹ 50 ⁴⁹ Optical indices were calculated to evaluate DOM source (fluorescence index, FI) 					
51 52	247	degradation (β : α ratio), and humification (humification index, HIX). FI, modified from			
55 55	248 McKnight <i>et al.</i> (2001) was calculated as the ratio of emission at 470 nm to emission at 520 nm				
56 57					
58 59 60		11			

at an excitation of 370 nm, and is an indicator of DOM source material (terrestrial or microbial). The β : α ratio, an indicator of DOM degradation, was calculated using the excitation wavelength at 310 nm as the emission intensity at 380 nm divided by the emission intensity maximum between 420 and 435 nm (Parlanti *et al.* 2000;Wilson & Xenopoulos 2009). HIX was calculated as the ratio of peak area under emissions 434-480 nm and 300-346 nm at 255 nm excitation (Zsolnay et al. 1999), with corrections described in Ohno (2002).

255 Statistical analysis

We used regression tree and random forest analysis to identify environmental predictor variables for CO₂ flux. This approach was chosen because it is robust to outliers, does not assume data independence or normality, and handles missing data well. First, we generated a regression tree model using the rpart package (Therneau et al. 2017) to predict the magnitude of instantaneous influx or efflux from discrete variables, including chl a, $\delta^{13}C_{DIC}$ FI, $\beta:\alpha$, HIX, surface water temperature, wind gust speed, average wind speed, precipitation (daily average), sampling site depth, epilimnetic DO, TP, TN, DOC, thermocline depth, and Schmidt stability from all lakes. Thermocline depth and Schmidt stability were calculated using rLakeAnalyzer (Winslow et al. 2017). The time step of CO_2 flux used in this analysis was matched to that of discrete predictor variables. We used default settings and pruned the tree by setting the maximum tree depth to 4. Second, we generated a random forest model using the R randomForest package (Liaw and Wiener 2002). Using this approach, we generated ensembles of regression trees based on 500 randomized bootstrap samples of training data, where the number of variables tried at each node split were informed by RMSE.

270 To identify predictors of net CO_2 flux (sum of calculated continuous flux over ice-free 271 sampling season, n=15), we first built a classification tree model using static predictor variables,

Page 19 of 52

Ecosystems

including maximum depth (Z_{max}), watershed to lake area ratio (WA:LA), and four land use categories (percent wetland, percent water, percent pasture, and percent row crop agriculture). We limited land use to these four categories to avoid overfitting the model, and used a minimum of 3 observations in a node for a split to be attempted, with a requirement that each split decrease overall lack of fit by a factor of 0.0001. Second, we generated a classification random forest model using the same variables and 500 randomized bootstrap samples of training data limited to two variables tried at each split. Terminal nodes were averaged across all trees to generate the relative importance of each predictor variable. **Results** *Water chemistry and meteorology* Water quality data are summarized in Table 1 and Supplementary Table 1. Across the study period, TN ranged from 0.2 mg L⁻¹ in Lake Orient in July, to 17.1 mg L⁻¹ in Badger Lake in May. With the exception of Arrowhead, Badger, and Springbrook Lakes (7 to 33 µg TP L⁻¹, 7 to 88 µg L⁻¹, and 10 to 89 µg L⁻¹, respectively), all sampling sites had eutrophic or hypereutrophic TP concentrations across sampling events (TP > 25 μ g L⁻¹), ranging from 27 μ g L⁻¹ in Beeds Lake to 885 µg L⁻¹ in Lake Orient. The highest DOC concentrations were measured in October in Blackhawk Lake (14.6 mg L⁻¹), and the lowest in April in East Lake Osceola (2.7 mg L⁻¹). 2012 was a severe drought year in the Midwestern U.S., so average rainfall across sites was minimal $(4.82 \pm 2.15 \text{ mm})$. Average lake depth was $4.0 \pm 1.55 \text{ m}$, and thermocline depth was 0.85 ± 1.26 m (Table S1). CO_2 flux

The magnitude of net CO_2 flux for the ice-free season was negative for 5 lakes and positive for 10 lakes (Table S4). The largest net efflux for the ice-free season was observed in Badger Lake (11,755 mmol m⁻²), and the largest net influx in Lake Orient (-1865 mmol m⁻²). Average daily flux across sites and sampling events ranged from -45.4 to 757.3 mmol m⁻² d⁻¹ (Figure 1). Across lakes, the largest efflux events were observed during spring or fall mixing (Figure 1), while minimum values of both influx and efflux were observed during periods of stratification (Figure 1). The longest period of calculated continuous influx (negative flux, day and night) was 73 days in Lake Orient, while the longest period of calculated net efflux (positive flux, day and night) was 96 days in Lake Arrowhead out of 193 days of continuous sampling (Figure 1).

304 Organic and inorganic carbon sources

Across seasons and sites, the DOM pool was dominated by autochthonous, degraded organic matter, not of higher plant origin (Table S3; Figure 2; β : α : 0.77 ± 0.05; FI: 1.6 ± 0.06; HIX_{Ohno}: 0.82 ± 0.06). β : α , an indicator of the level of degradation of the DOM pool, ranged from 0.65 (degraded) in Springbrook Lake in April to 0.91 (newly produced) in Arrowhead Lake in July. FI values ranged from 1.5 to 1.8, and did not show substantial variation across sites or seasons. Values approaching 1.8 indicate microbial and algal leachate; lower values approaching 1.2 indicate terrestrial organic matter of higher plant origin or soil organic matter. HIX, indicative of DOM humic content, was between 0.54 (not humic) and 0.92 (humic), with the lowest values in Blackhawk Lake in August, and highest in Five Island Lake in July. Mean δ^{13} C signatures of the ambient DIC pool were -1.16 ± 3.40 ‰, with a range of -12.57 ‰ to 5.78 ‰ (Figure 3). The highest $\delta^{13}C_{DIC}$ values were measured in Center Lake in September, and the lowest in Lake Orient in July.

1
2
3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
17
18
10
19
20
21
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
36
37
38
30
40
40
41
42
43
44
45
46
47
48
49
50
51
52
52 52
22
54 55
55
56
57
58
50

60

317 *Predictors of discrete CO*₂ *flux*

318 Discrete CO₂ flux was best predicted by chl a and TN concentration. Regression tree 319 models revealed that discrete CO₂ influx across eutrophic lakes in this study was best predicted 320 by chl *a* concentration greater than or equal to 24 μ g L⁻¹, while efflux was predicted by TN 321 greater than 12 mg L⁻¹ and chl *a* less than 24 μ g L⁻¹ (Figure 4). At high concentrations of chl *a*, 322 instantaneous wind speed equal to or exceeding 13 m s⁻¹ predicted with the highest rate of influx, 323 followed by HIX < 0.82. When chl *a* concentration was less than 24 μ g L⁻¹, efflux was predicted by DO less than 9.3 mg L⁻¹ and β : α less than 0.76 (Figure 4). The random forest model explained 324 325 31.25% of variation in the discrete dataset, and indicated that the most important predictor of CO₂ flux is chl *a*, followed by TN and HIX (Table 2). 326

327 *Predictors of net* CO_2 *flux*

Using static predictors, we found that net CO₂ influx during the ice-free season was best 328 329 predicted by lack of watershed wetland cover (< 0.5%) by both classification tree and random 330 forest models (Figure 5, Table 3). When percent wetland exceeded 0.5, the classification tree 331 model predicted that lakes are rendered CO₂ sinks only if their WA:LA is less than 14, and Z_{max} is less than 5.3. When percent wetland cover exceeds 0.5, lakes are predicted to be CO₂ sources 332 333 if WA:LA is greater than 14, or if WA:LA is less than 14 but Z_{max} is greater than 5.3. The 334 random forest classification model ranked the relative importance of each static predictor as 335 follows: % wetland, % pasture, % water, Z_{max}, WA:LA, and agriculture (Table 4).

336 Discussion

Our results indicate that anthropogenically eutrophic and hypereutrophic lakes exhibit extreme rates of CO_2 flux associated with autochthony and land-use. Five of the 15 lakes in this study maintained CO_2 influx, day and night, for days to months at a time (Fig. 1, Supplemental

plates S1-S15). In these lakes, atmospheric influx was predicted by indicators of autochthonous primary production (chlorophyll a, dissolved oxygen, newly produced dissolved organic matter) and small watershed to lake area ratios (Fig. 4 and 5). Lakes that were net CO₂ emitters over the sampling period had rates at the high end of literature reported values and were best predicted by nitrogen enrichment and wetland cover. This reflects spring post-drought release of nitrogen from agricultural soils in lakes with large watershed to lake area ratios (Howarth et al. 2012; Al-Kaisi et al. 2013; Loecke et al. 2017). Previously reported net flux rates for oligotrophic and mesotrophic lakes have ranged from 0.58 to 4.08 mol m⁻² sampling period ⁻¹ (Fig. 6; Table S4; Stets et al. 2009; Jones et al. 2016) compared to net efflux rates in eutrophic lakes reported here ranging from 0.33 to 11.76 mol m⁻² sampling period ⁻¹ (Fig. 6; Table S4). Because stable isotope analyses did not show evidence of degradation of terrestrial organic matter, these large flux events may be a result of nitrate and nitrite photodegradation (Brezonik and Fulkerson-Brekken 1998a; Schwarzenbach et al. 2003) primed by accumulated autochthonous organic matter in eutrophic and hypereutrophic lakes. Nitrate and nitrite are important intermediates in photochemistry of freshwater lakes, generating hydroxyl radicals (*OH) that are rapidly scavenged by all types of DOM (allochthonous and autochthonous) at approximately equal rates (Brezonik and Fulkerson-Brekken 1998a). This suggests that eutrophication processes resulting from both nitrogen and phosphorus loading can fundamentally alter gas flux and the contribution of inland waters to the global carbon budget, but that eutrophic lakes vary substantially in response due to regional variability in land use and land cover characteristics (Balmer and Downing 2011; Jones et al. 2016; Ouyang et al. 2017). Across sites and seasons, we found that the organic matter pool was primarily

autochthonous in our study lakes. Stable isotope analysis indicated that DIC was derived from

Page 23 of 52

Ecosystems

1 2	
3	
4 5	
6 7	•
8 9	
10 11	
12	
14	
15 16	•
17 18	
19 20	
21 22	
23	
24	•
26 27	
28 29	
30 31	
32 33	
34	•
36	
37 38	
39 40	
41 42	
43 44	•
45	
40	
48 49	
50 51	
52 53	
54 55	
56	
58	
59	

60

363	the atmosphere and mineral dissolution, rarely from heterotrophic degradation of terrestrial
364	organic matter (Fig. 3). These findings demonstrate that human activity and eutrophication have
365	not only degraded water quality and altered organic matter composition in lakes (Foley et al.
366	2005; Li et al. 2008; Williams et al. 2015), but may have much farther reaching effects on CO_2
367	flux and the role of lakes in the global carbon cycle. With increased land use alteration for
368	agriculture and urban centers, more freshwater ecosystems will be subject to these pressures and
369	may shift to eutrophic and hypereutrophic states (Foley et al. 2005; Heisler et al. 2008). This will
370	depend on local conservation laws, as eutrophication in some parts of the world has leveled off
371	or is declining due to fertilizer use restrictions (Bennett et al. 2001). In the agricultural Midwest
372	U.S., however, where industrial row-crop agriculture dominates the landscape, reductions in non-
373	point source nutrient pollution remain voluntary and are not enforced. Recent changes to the U.S.
374	Clean Water Rule further reduce regulatory oversight of headwater streams, wetlands, and
375	groundwater, which will have cascading impacts on lakes. Our results indicate that land-use
376	alterations and eutrophication can substantially influence CO ₂ flux rates, both as sustained influx
377	resulting in net CO_2 sinks or as very large seasonal CO_2 efflux.
378	In these lakes, flux was negatively correlated with variables associated with
379	eutrophication and primary productivity. Previous work in experimentally eutrophied ecosystems
380	has suggested that the magnitude of the inorganic carbon demand of autochthonous primary
381	producers will be less than the combined contributions of exogenous watershed CO ₂ inputs and
382	heterotrophic degradation of terrestrial organic matter (Wilkinson et al. 2016). While this may be
383	accurate in northern temperate lakes having high contributions of terrestrial plant-derived,
384	humic, and aromatic organic carbon (Sobek et al. 2005; Kothawala et al. 2014), it is not the case
385	in lakes with agricultural watersheds and autochthonous carbon pools. This is evidenced by

previous studies (Balmer and Downing 2011; Pacheco et al. 2014) and our 5 lakes having net CO₂ influx during the open water season. Optical characterization of DOM in these 5 lakes indicated that their organic matter pools were dominated by compounds resembling newly produced bacterial and algal leachate with low humic content (Table S3). Correspondingly, our model indicated that non-humic DOM (HIX < 0.82) was an important predictor of CO₂ influx at high chl *a* concentration.

While 5 of the lakes in this study exhibited net CO₂ influx, 10 showed the opposite trend and were net emitters of CO₂. High efflux was best predicted by TN and watershed wetland cover. 2012 was a severe drought year in the Midwestern U.S., resulting in high nitrate accumulation in agricultural soils (Al-Kaisi et al. 2013), which has been shown in many studies to increase nitrate export during rain events (Watmough et al. 2004; Mosley 2015). Badger Lake, which had more than double the net efflux than any other lake in this study (11,755 mmol m⁻²), also had record high nitrate levels in 2012, ranging from 0.4 to 16.8 mg NO₃-N L⁻¹ with a mean value of 9.4 ± 5.8 mg NO₃-N L⁻¹. One possible explanation for the co-occurrence of elevated nitrate concentrations and flux rates is the photodegradation of nitrate and nitrite in surface waters. This process would generate hydroxyl radicals which mineralize organic carbon, increasing CO₂ efflux (Brezonik and Fulkerson-Brekken 1998b; Molot et al. 2003; Filstrup and Downing 2017). It is also possible that DIC export during rain events could result in outgassing of terrestrially-derived CO₂, though TN was consistently the best predictor of efflux in our regression tree and random forest models.

With the exception of Badger Lake, rates of net efflux during the 2012 ice free seasons in
these lakes (April 1 to mid-November) ranged from 327 to 5474 mmol m⁻². These values are in a
comparable range of previous studies in temperate lakes and reservoirs (Kosten et al. 2010;

Page 25 of 52

Ecosystems

1	
2	
3	
4	
5	
6	
7	
, 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
30	
27	
32 33	
ככ ז∡	
54 25	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
57	
54	
22	
20	
5/	
58	
59	
60	

431

409	Barros et al. 2011; Pacheco et al. 2014; Jones et al. 2016), but on average 3 to 4 times higher
410	than previous studies in the same lakes (Pacheco et al. 2014) and more recent studies in
411	artificially fertilized northern temperate lakes (Wilkinson et al. 2016) (Figure 6, Supplemental
412	Table S4). Calculated flux in Blackhawk Lake reported in Pacheco et al. (2014) was determined
413	based on monthly discrete measurements, compared with high frequency measurements in this
414	study. Discrete daytime measurements do not capture nighttime respiratory flux that high
415	frequency sensors do, and may miss large transient fluxes associated with mixing events. The
416	largest periods of efflux in our study occurred during spring and fall mixing (Figure 1). These
417	periods were not captured in Wilkinson et al. (2016), which calculated flux for 100 days between
418	late May and late August, and is one possible explanation for the large difference in net efflux
419	between the two studies of lakes with comparable trophic status. Similar seasonal trends were
420	found by Jones et al. (2016) across a gradient of oligotrophic to eutrophic lakes, where the
421	majority of annual efflux occurred during spring and fall mixing events, and by Trolle et al. 2012
422	where calculated CO ₂ influx and efflux was lowest in summer months across 151 Danish lakes.
423	Stable isotopic analysis of DIC pools across all lakes in this study ranged from -12.57 to
424	5.78 $\delta^{13}C_{DIC}$ ‰, indicating they were derived primarily from mineral dissolution and
425	atmospheric sources, but not from heterotrophic degradation of terrestrial organic matter (Figure
426	3). While $\delta^{13}C_{DIC}$ was not an important predictor of CO ₂ flux in our models, our measured range
427	demonstrates that the inorganic carbon in these lakes is not sourced from degradation of
428	terrestrial organic matter, which is an important determinant of efflux in northern temperate and
429	boreal lakes. Published values of $\delta^{13}C_{DIC}$ in lake surface waters generally range from -29.6 ‰ to
430	+2.6 ‰, where the lowest values indicate heterotrophic degradation of terrestrial organic matter

19

(Bade et al. 2004). Depending on proximity to industry and urban areas, atmospheric sources

2
З
1
4
5
6
7
/
8
9
10
11
11
12
13
14
1
15
16
17
18
10
19
20
21
22
~~ ``
23
24
25
26
20
27
28
29
30
50
31
32
33
31
54
35
36
37
20
20
39
40
41
12
+2
43
44
45
16
40
4/
48
49
50
50
51
52
53
51
54
55
56
57
50

432	range from -7.5 ‰ to -12 ‰, though the global atmosphere is fairly well mixed and has a
433	nominal value of around -8.5 ‰ (Mook 1986; Boutton 1991). At high pH values, chemically
434	enhanced diffusion can result in fractionation that would decrease $\delta^{13}C_{DIC}$ values (Bade and Cole
435	2006). If bloom-forming phytoplankton are taking up mineral bicarbonate rather than CO ₂ ,
436	heterotrophic degradation of autochthonous material should result in $\delta^{13}C_{DIC}$ values between -15
437	and -10 ‰ (Morales-Williams et al. 2017). Values associated with carbonate dissolution
438	typically span from -15‰ to 0‰, however such values (and higher) can also be attributable to
439	sediment methanogenic fermentation in shallow systems (Boutton 1991). Due to high rates of
440	water column primary productivity, hypolimnetic hypoxia and anoxia, and sediment organic
441	carbon accumulation in these systems (Heathcote and Downing 2011), methanogenic
442	fermentation is a plausible explanation for elevated $\delta^{13}C_{DIC}$ values measured in this study.
443	Non-humic DOM was a predictor of CO_2 influx at high chl <i>a</i> concentration in
444	hypereutrophic lakes, demonstrating that autochthonous carbon is an important driver of CO_2
445	dynamics in these systems. Optical characterization of DOM indicated that across lakes, the
446	organic matter pool was composed primarily of endogenous material, both fresh and degraded,
447	with moderate humic content (Table S3, Figure 2). Average FI values, indicating DOM source
448	material, were 1.6 ± 0.06 . Values approaching 1.2 would indicate terrestrial organic matter of
449	higher plant origin, while values approaching 1.8 are reflective of algal and microbial leachate
450	(McKnight et al. 2001). The average value of β : α across sites and sampling events was 0.77 ±
451	0.05, suggesting mixed contributions of fresh and degraded material in these lakes. Lower values
452	of β : α indicate DOM is highly degraded (~0.5), while higher values indicate the DOM pool is
453	fresh, or recently produced (~1.0) (Parlanti et al. 2000; Wilson and Xenopoulos 2008). Similarly,
454	HIX values in our study suggested contributions of humic organic matter in the DOM pool.

Page 27 of 52

1

Ecosystems

2
3
1
2
6
7
8
9
10
11
12
12
1.0
14
15
16
17
18
19
20
21
22
23
23
24
25
26
27
28
29
30
31
27
3Z 22
33
34
35
36
37
38
39
40
41
42
-⊤∠ ⁄\?
43
44
45
46
47
48
49
50
51
51
52
53
54
55
56
57
58

59

60

455 Because FI values indicate the DOM pool is of microbial and algal origin, and $\delta^{13}C_{DIC}$ values do 456 not indicate degradation of terrestrial organic matter is occurring in these systems, these HIX 457 values are likely attributable to microbial humics and reflect rapid processing of endogenous 458 material. These patterns are supported by the β : α ratio, which suggests a large portion of the 459 DOM pool in these lakes has been processed and degraded.

460 Our results demonstrate that anthropogenically eutrophic lakes can function as significant 461 sources and sinks of CO₂. While previous work with some exceptions has demonstrated that 462 lakes generally act as net sources of CO₂ to the atmosphere (Cole et al. 1994; Sobek et al. 2005; 463 Wilkinson et al. 2016), we show that inorganic carbon uptake by primary producers can far 464 exceed contributions from heterotrophy and mineral dissolution. While two-thirds of our study sites were net CO_2 emitters, we show that hypereutrophic lakes with <0.5% watershed wetland 465 466 cover maintained negative flux (i.e., continuous CO₂ uptake) for months at a time, meaning high rates of primary production in these impacted ecosystems was not balanced or exceeded by 467 468 respiration or exogenous DIC inputs (Wilkinson et al. 2016). Lakes that were net sources of CO₂ 469 had substantially higher flux rates than oligotrophic or mesotrophic lakes previously reported in 470 the literature, and these trends were best predicted by nitrogen enrichment. Our findings further 471 indicate that the carbon supplies of these lake food webs are supported by autochthonous 472 sources, have minimal contributions of terrestrial organic matter, and are cycled by 473 autochthonous processes, as evidenced by both optical characterization of DOM and stable 474 isotope analyses. Taken together, these findings further demonstrate that anthropogenic eutrophication has fundamentally changed lake biogeochemistry, gas flux, and their role in the 475 global carbon cycle. As global land use changes to accommodate a large and growing human 476 477 population, it is likely that more freshwater ecosystems will shift to eutrophic and hypereutrophic

2	
3	
4	
5	
6	
7	
, Q	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
17 20	
∠∪ ว1	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
21	
21	
22	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
75 76	
40	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
50	
20	

59

60

1

478 states (Cole et al. 2007; Tranvik et al. 2009) in regions where non-point source pollution remains 479 unregulated. The impacts of these processes on lake carbon cycles will depend on the extent of 480 eutrophication, and regional scale watershed characteristics. In our models, nitrogen loading was 481 the strongest predictor of extreme efflux rates in eutrophic lakes, and net influx was best 482 predicted by chlorophyll and lack of watershed wetland cover. Extensive watershed cultivation without wetland buffers would be expected to drive lakes toward net CO₂ sinks, while post-483 484 drought nitrogen release from agricultural watersheds is expected to result in high rates of CO₂ efflux. It will, therefore, be critical to integrate eutrophic and hypereutrophic systems into the 485 486 global carbon budget and evaluate the effects of these changes at global scales. 487 488 Acknowledgements 489 We thank Amber Erickson, Lisa Whitehouse, and Suzanne Ankerstjerne for chemical and 490 analytical assistance, and Adam Heathcote for his contributions to site selection and sampling 491 design. Lakes in this study occupy indigenous lands of the Meskwaki, Sauk, Ho-Chunk, Ioway, 492 and Dakota, forcibly ceded in multiple treaties between 1824 and 1853 493 (http://www.iowahild.com/index.html). The Meskwaki Nation currently resides on 7,000 acres in 494 Meskwakenuk in Tama County, IA. This study was funded by a grant from the National Science 495 Foundation to John A. Downing, DEB-1021525. 496 497 References Al-Kaisi, M. M., R. W. Elmore, J. G. Guzman, and others. 2013. Drought impact on crop 498 production and the soil environment: 2012 experiences from Iowa. J. Soil Water Conserv. 499 500 **68**: 19A-24A. doi:10.2489/jswc.68.1.19A

Page 29 of 52

Ecosystems

1 2		
- 3 4	501	Arar, E. J., and G. B. Collins. 1997. Method 445.0: In vitro determination of chlorophyll a and
5 6	502	pheophyton a in marine and freshwater algae by fluorescence: Revision 1.2. EPA 22.
7 8	503	Bade, D. L., S. R. Carpenter, J. J. Cole, P. C. Hanson, and R. H. Hesslein. 2004. Controls of delta
9 10 11	504	13 C-DIC in lakes : Geochemistry , lake metabolism , and morphometry. Limnol. Oceanogr.
12 13	505	49 : 1160–1172.
14 15	506	Bade, D. L., and J. J. Cole. 2006. Impact of chemically enhanced diffusion on dissolved
16 17 18	507	inorganic carbon stable isotopes in a fertilized lake. J. Geophys. Res. Ocean. 111: 1-10.
19 20	508	doi:10.1029/2004JC002684
21 22	509	Balmer, M. B., and J. A. Downing. 2011. Carbon dioxide concentrations in eutrophic lakes :
23 24 25	510	undersaturation implies atmospheric uptake. Inl. Waters 1: 125–132. doi:10.5268/IW-
25 26 27	511	1.2.366
28 29	512	Barros, N., J. J. Cole, L. J. Tranvik, Y. T. Prairie, D. Bastviken, V. L. M. Huszar, P. del Giorgio,
30 31 22	513	and F. Roland. 2011. Carbon emission from hydroelectric reservoirs linked to reservoir age
32 33 34	514	and latitude. Nat. Geosci. 4: 593–596. doi:10.1038/ngeo1211
35 36	515	Beirne, E. C., A. D. Wanamaker, and S. C. Feindel. 2012. Experimental validation of
37 38	516	environmental controls on the δ 13C of Arctica islandica (ocean quahog) shell carbonate.
39 40 41	517	Geochim. Cosmochim. Acta 84: 395–409. doi:10.1016/j.gca.2012.01.021
42 43	518	Bennett, E. M, S. R. Carpenter, and N. F. Caracco. 2001. Human Impact on Erodable
44 45	519	Phosphorus and Eutrophication: A Global Perspective. Bioscience 51: 227.
46 47 48	520	doi:10.1641/0006-3568(2001)051[0227:hioepa]2.0.co;2
49 50	521	Boutton, T. W. 1991. Stable carbon isotope ratios of natural materials: Atmospheric, terrestrial,
51 52	522	marine, and freshwater environments, p. 173-183. In D.C. Coleman and B. Fry [eds.],
53 54 55	523	Carbon Isotope Techniques.
56 57 58		
59		23

3 4	524	Brezonik, P. L., and J. Fulkerson-Brekken. 1998a. Nitrate-induced photolysis in natural waters:
5 6	525	Controls on concentrations of hydroxyl radical photo-intermediates by natural scavenging
/ 8 9	526	agents. Environ. Sci. Technol. 32: 3004-3010. doi:10.1021/es9802908
) 10 11	527	Brezonik, P. L., and J. Fulkerson-Brekken. 1998b. Nitrate-Induced Photolysis in Natural
12 13	528	Waters: Controls on Concentrations of Hydroxyl Radical Photo-Intermediates by Natural
14 15 16	529	Scavenging Agents. Environ. Sci. Technol. 32: 3004–3010. doi:10.1021/es9802908
17 18	530	Brooks, B. W., J. M. Lazorchak, M. D. A. Howard, and others. 2016. Are harmful algal blooms
19 20	531	becoming the greatest inland water quality threat to public health and aquatic ecosystems?
21 22 22	532	Environ. Toxicol. Chem. 35 : 6–13. doi:10.1002/etc.3220
25 24 25	533	Cole, J. J., and N. F. Caraco. 1998. Atmospheric exchange of carbon dioxide in a low-wind
26 27	534	oligotrophic lake measured by the addition of SF6. Limnol. Oceanogr. 43: 647–656.
28 29	535	doi:10.4319/lo.1998.43.4.0647
30 31 32	536	Cole, J. J., N. F. Caraco, G. W. Kling, and T. K. Kratz. 1994. Carbon dioxide supersaturation in
33 34	537	the surface waters of lakes. Science 265: 1568–70. doi:10.1126/science.265.5178.1568
35 36	538	Cole, J. J., Y. T. Prairie, N. F. Caraco, and others. 2007. Plumbing the global carbon cycle:
37 38 39	539	Integrating inland waters into the terrestrial carbon budget. Ecosystems 10: 171–184.
40 41	540	doi:10.1007/s10021-006-9013-8
42 43	541	Cory, R., M. Miller, D. M. McKnight, J. J. Guerard, and P. L. Miller. 2010. Effect of instrument-
44 45 46	542	specific response on the analysis of fulvic acid fluorescence spectra. Limnol. Oceanogr.
47 48	543	Methods 8: 67–78. doi:10.4319/lom.2010.8.67
49 50	544	Crumpton, W. D., T. M. Isenhart, and P. D. Mitchell. 1989. Nitrate and organic N analyses with
51 52	545	second-derivative spectroscopy. Limnol. Oceanogr. 37: 907-913.
53 54 55 56 57 58	546	Duarte, C. M., and Y. T. Prairie. 2005. Prevalence of Heterotrophy and Atmospheric CO2
59		24

60

1 2		
2 3 4	547	Emissions from Aquatic Ecosystems. Ecosystems 8: 862–870. doi:10.1007/s10021-005-
5 6	548	0177-4
7 8 0	549	Filstrup, C. T., and J. A. Downing. 2017. Relationship of chlorophyll to phosphorus and nitrogen
9 10 11	550	in nutrient-rich lakes. Inl. Waters 7: 385-400. doi:10.1080/20442041.2017.1375176
12 13	551	Finlay, K., P. R. Leavitt, a. Patoine, and B. Wissel. 2010. Magnitudes and controls of organic
14 15	552	and inorganic carbon flux through a chain of hard-water lakes on the northern Great Plains.
16 17 18	553	Limnol. Oceanogr. 55: 1551–1564. doi:10.4319/lo.2010.55.4.1551
19 20	554	Finlay, K., P. R. Leavitt, B. Wissel, and Y. T. Prairie. 2009. Regulation of spatial and temporal
21 22	555	variability of carbon flux in six hard-water lakes of the northern Great Plains. 54: 2553–
23 24 25	556	2564.
25 26 27	557	Foley, J. a, R. Defries, G. P. Asner, and others. 2005. Global consequences of land use. Science
28 29	558	309 : 570–4. doi:10.1126/science.1111772
30 31	559	Del Giorgio, P. A., J. J. Cole, N. F. Caraco, and R. H. Peters. 2009. Linking Planktonic Biomass
32 33 34	560	and Metabolism to Net Gas Fluxes in Northern Temperate Lakes. Ecology 80: 1422–1431.
35 36	561	Golub, M., A. R. Desai, G. A. McKinley, C. K. Remucal, and E. H. Stanley. 2017. Large
37 38	562	Uncertainty in Estimating pCO2 From Carbonate Equilibria in Lakes. J. Geophys. Res.
39 40 41	563	Biogeosciences 122: 2909–2924. doi:10.1002/2017JG003794
41 42 43	564	Heathcote, A. J., and J. a. Downing. 2011. Impacts of Eutrophication on Carbon Burial in
44 45	565	Freshwater Lakes in an Intensively Agricultural Landscape. Ecosystems 15: 60–70.
46 47	566	doi:10.1007/s10021-011-9488-9
48 49 50	567	Heisler, J., P. M. Glibert, J. M. Burkholder, and others. 2008. Eutrophication and harmful algal
50 51 52	568	blooms: A scientific consensus. Harmful Algae 8: 3-13. doi:10.1016/j.hal.2008.08.006
53 54 55	569	Howarth, R., D. Swaney, G. Billen, and others. 2012. Nitrogen fluxes from the landscape are
56 57		
58 59 60		25

1 2		
2 3 4	570	controlled by net anthropogenic nitrogen inputs and by climate. Front. Ecol. Environ. 10:
5 6	571	37-43. doi:10.1038/news050808-1
7 8	572	Jeffrey, S. W., R. F. C. Mantoura, and S.W. Wright. 1997. Phytoplankton Pigments in
9 10 11	573	Oceanography.
12 13	574	Johnson, M., M. Billett, K. Dinsmore, M. Wallin, K. E. Dyson, and R. S. Jassal. 2009. Direct and
14 15	575	continuous measurement of dissolved carbon dioxide in freshwater aquatic systems-
16 17 18	576	method and applications. Ecohydrology. doi:10.1002/eco
19 20	577	Jones, J. R., D. V Obrecht, J. L. Graham, M. B. Balmer, C. T. Filstrup, and J. A. Downing. 2016.
21 22	578	Seasonal patterns in carbon dioxide in 15 mid-continent (USA) reservoirs. Inl. Waters 265-
23 24 25	579	272. doi:10.5268/IW-6.2.982
26 27	580	Jones, S. E., T. K. Kratz, CY. Chiu, and K. D. McMAHON. 2009. Influence of typhoons on
28 29	581	annual CO 2 flux from a subtropical, humic lake. Glob. Chang. Biol. 15: 243–254.
30 31 32	582	doi:10.1111/j.1365-2486.2008.01723.x
32 33 34	583	Kellerman, A. M., D. N. Kothawala, T. Dittmar, and L. J. Tranvik. 2015. Persistence of
35 36	584	dissolved organic matter in lakes related to its molecular characteristics. Nat. Geosci. 8:
 37 38 39 40 41 42 43 	585	454–459. doi:10.1038/NGEO2440
	586	Kling, G., G. Kipphut, and M. Miller. 1992. The flux of CO2 and CH4 from lakes and rivers in
	587	arctic Alaska. Hydrobiologia 240: 23–36.
44 45	588	Kosten, S., F. Roland, D. M. L. Da Motta Marques, E. H. Van Nes, N. Mazzeo, L. D. S. L.
46 47 48	589	Sternberg, M. Scheffer, and J. J. Cole. 2010. Climate-dependent CO 2 emissions from lakes.
48 49 50 51 52	590	Global Biogeochem. Cycles 24: 1-7. doi:10.1029/2009GB003618
	591	Kothawala, D. N., C. a Stedmon, R. a Müller, G. a Weyhenmeyer, S. J. Köhler, and L. J.
53 54 55	592	Tranvik. 2014. Controls of dissolved organic matter quality: evidence from a large-scale
56 57		
58 59		26

Page 33 of 52

1 2		
- 3 4	593	boreal lake survey. Glob. Chang. Biol. 20: 1101–14. doi:10.1111/gcb.12488
5 6	594	Li, L., Z. Yu, R. E. Moeller, and G. E. Bebout. 2008. Complex trajectories of aquatic and
7 8	595	terrestrial ecosystem shifts caused by multiple human-induced environmental stresses.
9 10 11	596	Geochim. Cosmochim. Acta 72: 4338–4351. doi:10.1016/j.gca.2008.06.026
12 13	597	Liaw, A., and M. Wiener. 2002. Classification and regression by randomForest. R news.
14 15	598	Loecke, T. D., A. J. Burgin, D. A. Riveros-Iregui, A. S. Ward, S. A. Thomas, C. A. Davis, and
16 17 18	599	M. A. S. Clair. 2017. Weather whiplash in agricultural regions drives deterioration of water
19 20	600	quality. Biogeochemistry 133: 7–15. doi:10.1007/s10533-017-0315-z
21 22	601	López, P., R. Marcé, and J. Armengol. 2011. Net heterotrophy and CO 2 evasion from a
23 24 25	602	productive calcareous reservoir: Adding complexity to the metabolism-CO 2 evasion issue.
25 26 27	603	J. Geophys. Res. 116: 1–14. doi:10.1029/2010JG001614
28 29	604	Marcé, R., B. Obrador, Josep-Anton Morguí, J. L. R. P. López, and A. Joan. 2015. Carbonate
30 31	605	weathering as a driver of CO 2 supersaturation in lakes. Nat. Geosci. 8: 1–5.
32 33 34	606	doi:10.1038/NGEO2341
35 36	607	McKnight, D., E. Boyer, P. Westerhoff, P. Doran, and T. Kulbe. 2001. Spectrofluorometric
37 38	608	characterization of dissolved organic matter for indication of precursor organic material and
39 40 41	609	aromaticity. Limnol. Oceanogr. 46: 38–48.
41 42 43	610	Molot, L. A., S. A. Miller, P. J. Dillon, and C. G. Trick. 2003. A simple method for assaying
44 45	611	extracellular hydroxyl radical activity and its application to natural and synthetic waters.
46 47	612	213 : 203–213. doi:10.1139/F03-014
48 49 50	613	Mook, W. G. 1986. 13C in Atmospheric CO2. Netherlands J. Sea Res. 20: 211–223.
51 52	614	Morales-Williams, A. M., A. D. Wanamaker, and J. A. Downing. 2017. Cyanobacterial carbon
53 54	615	concentrating mechanisms facilitate sustained CO2 depletion in eutrophic lakes.
55 56 57		
58 59		27
60		<u> </u>

1		
2 3 4	616	Biogeosciences 14: 2865–2875. doi:10.5194/bg-14-2865-2017
5 6	617	Mosley, L. M. 2015. Drought impacts on the water quality of freshwater systems; review and
/ 8 9	618	integration. Earth-Science Rev. 140: 203–214. doi:10.1016/j.earscirev.2014.11.010
10 11	619	Murphy, K. R., K. D. Butler, R. G. M. Spencer, C. a Stedmon, J. R. Boehme, and G. R. Aiken.
12 13	620	2010. Measurement of dissolved organic matter fluorescence in aquatic environments: an
14 15 16	621	interlaboratory comparison. Environ. Sci. Technol. 44: 9405-12. doi:10.1021/es102362t
17 18	622	Nõges, P., F. Cremona, A. Laas, and others. 2016. Role of a productive lake in carbon
19 20	623	sequestration within a calcareous catchment. Sci. Total Environ. 550: 225–230.
21 22 23	624	doi:10.1016/j.scitotenv.2016.01.088
24 25	625	Ohno, T. 2002. Fluorescence Inner-Filtering Correction for Determining the Humification Index
26 27	626	of Dissolved Organic Matter. Environ. Sci. Technol. 36: 742–746. doi:10.1021/es0155276
28 29 30	627	Ouyang, Z., C. Shao, H. Chu, R. Becker, T. Bridgeman, C. A. Stepien, R. John, and J. Chen.
31 32	628	2017. The effect of algal blooms on carbon emissions in western lake erie: An integration of
33 34	629	remote sensing and eddy covariance measurements. Remote Sens. 9: 1–19.
35 36 37	630	doi:10.3390/rs9010044
38 39	631	Pace, M. L., and Y. T. Prairie. 2005. Respiration in Lakes in Respiration in Aquatic Ecosystems,
40 41 42	632	P. Del Giorgio and P. Williams [eds.]. Oxford University Press.
42 43 44	633	Pacheco, F., F. Roland, and J. Downing. 2014. Eutrophication reverses whole-lake carbon
45 46	634	budgets. Inl. Waters 4: 41–48. doi:10.5268/IW-4.1.614
47 48 40	635	Parlanti, E., K. Wo, L. Geo, and M. Lamotte. 2000. Dissolved organic matter fluorescence
49 50 51	636	spectroscopy as a tool to estimate biological activity in a coastal zone submitted to
52 53	637	anthropogenic inputs. Org. Geochem. 31 : 1765–1781.
54 55 56 57 58 59	638	Petrone, K. C., J. B. Fellman, E. Hood, M. J. Donn, and P. F. Grierson. 2011. The origin and
		۷۵ کې

1 2							
3 4	639	function of dissolved organic matter in agro-urban coastal streams. J. Geophys. Res. 116.					
5 6	640	doi:10.1029/2010JG001537					
7 8 0	641	R Core Team. 2015. R Core Team (2015). R: A language and environment for statistical					
9 10 11	642	computing.					
12 13	643	Raymond, P. A., and J. E. Bauer. 2001. DOC cycling in a temperate estuary : A mass balance					
14 15 16	644	approach using natural 14 C and C isotopes. Limnol. Oceanogr. 46: 655–667.					
17 18	645	Schwarzenbach, R., P. Gschwend, and D. Imbiden. 2003. Indirect photolysis: Reactions with					
19 20	646	photooxidants in natural waters and in the atmosphere. In Environmental Organic					
21 22	647	Chemistry, 2nd ed. Wiley.					
23 24 25	648	Sobek, S., L. Tranvik, and J. Cole. 2005. Temperature independence of carbon dioxide					
26 27 28 29	649	supersaturation in global lakes. Global Biogeochem. Cycles 19: 1–10.					
	650	doi:10.1029/2004GB002264					
30 31 32	651	Stets, E. G., R. G. Striegl, G. R. Aiken, D. O. Rosenberry, and T. C. Winter. 2009. Hydrologic					
32 33 34 35 36 37 38	652	support of carbon dioxide flux revealed by whole-lake carbon budgets. J. Geophys. Res.					
	653	114 : 1–14. doi:10.1029/2008JG000783					
	654	Stumm, W., and J. Morgan. 1996. Aquatic chemistry: chemical equilibria and rates in natural					
39 40 41	655	waters, 3rd ed. Wiley-Interscience.					
42 43	656	Therneau, T., B. Atkinson, and B. Ripley. 2017. rpart: Recursive Partitioning and Regression					
44 45	657	Trees. 2017.					
46 47 48	658	Tranvik, L. J., J. A. Downing, J. B. Cotner, and others. 2009. Lakes and reservoirs as regulators					
49 50	659	of carbon cycling and climate. Limnol. Oceanogr. 54: 2298–2314.					
51 52	660	doi:10.4319/lo.2009.54.6_part_2.2298					
53 54 55 56	661	Trolle, D., P. A. Staehr, T. A. Davidson, R. Bjerring, T. L. Lauridsen, M. Søndergaard, and E.					
57 58							
59		29					

1 2		
- 3 4	662	Jeppesen. 2012. Seasonal Dynamics of CO 2 Flux Across the Surface of Shallow Temperate
5 6	663	Lakes. Ecosystems 15: 336–347. doi:10.1007/s10021-011-9513-z
7 8	664	Wanninkhof, R. 1992. Relationship Between Wind Speed and Gas Exchange. J. Geophys. Res.
9 10 11	665	97 : 7373–7382.
12 13	666	Watmough, S. A., M. C. Eimers, J. Aherne, and P. J. Dillon. 2004. Climate Effects on Stream
14 15	667	Nitrate Concentrations at 16 Forested Catchments in South Central Ontario. Environ. Sci.
16 17	668	Technol. 38: 2383–2388. doi:10.1021/es0351261
18 19 20	669	Weyhenmeyer, G. A., S. Kosten, M. B. Wallin, L. J. Tranvik, E. Jeppesen, and F. Roland. 2015.
21 22	670	Significant fraction of CO2 emissions from boreal lakes derived from hydrologic inorganic
23 24	671	carbon inputs. Nat. Geosci. 8: 933–936. doi:10.1038/NGEO2582
25 26 27	672	Wilkinson, G. M., C. D. Buelo, J. J. Cole, and M. L. Pace. 2016. Exogenously produced CO 2
28 29	673	doubles the CO 2 efflux from three north temperate lakes. Geophys. Res. Lett. 43.
30 31	674	doi:10.1002/2016GL067732
32 33 34	675	Williams, C. J., P. C. Frost, A. M. Morales-Williams, J. H. Larson, W. B. Richardson, A. S.
35 36	676	Chiandet, and M. A. Xenopoulos. 2015. Human activities cause distinct dissolved organic
37 38	677	matter composition across freshwater ecosystems. Glob. Chang. Biol. 613-626.
39 40	678	doi:10.1111/gcb.13094
41 42 43	679	Williams, C., Y. Yamashita, H. Wilson, R. Jaffé, and M. Xenopoulos. 2010. Unraveling the role
44 45	680	of land use and microbial activity in shaping dissolved organic matter characteristics in
46 47	681	stream ecosystems. Limnol. Oceanogr. 55: 1159–1171. doi:10.4319/lo.2010.55.3.1159
48 49 50	682	Wilson, H. F., and M. A. Xenopoulos. 2008. Effects of agricultural land use on the composition
50 51 52	683	of fluvial dissolved organic matter. Nat. Geosci. 2: 37-41. doi:10.1038/ngeo391
53 54 55	684	Winslow, L., J. Read, R. Woolway, J. Brentrup, T. Leach, and J. Zwart. 2017. rLakeAnalyzer:
56 57		
58 59 60		30

60

2		
3 4	685	Lake Physics Tools. R package version 1.11.0. 2017.
5 6	686	Zsolnay, A., E. Baigar, M. Jimenez, B. Steinweg, and F. Saccomandi. 1999. Differentiating with
7 8 0	687	fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to
9 10 11	688	drying. Chemosphere 38 : 45–50. doi:10.1016/S0045-6535(98)00166-0
12 13	689	2012. APHA Standard Methods for the examination of waste and wastewater, 22nd ed.
14 15 16	690	American Public Health Association.
16 17 18 19	691	Table Legend
20 21	692	Table 1. Discrete summary data for lakes included in this study measured between April (ice-
22 23 24	693	off) and November 2012. Total phosphorus (TP), total nitrogen (TN), chlorophyll a (Chl a),
25 26	694	DOC, pH, and alkalinity are reported as average values of $n=23$ sampling events \pm standard
27 28 29 30 31 32 33 34 35 36	695	deviation.
	696	Table 2. Relative importance of predictor variables of discrete CO ₂ flux in random forest
	697	regression model. Importance is estimated by IncNodePurity which indicates the total decrease
	698	in node impurities from splitting on the variable averaged over all attempted trees and measured
37 38 30	699	by residual sum of squares.
39 40 41	700	Table 3. Relative importance of categorical predictor variables of net CO2 flux in random forest
42 43	701	classification model. Importance is estimated by MeanDecreaseGini, which informs splits based
44 45 46	702	on contribution of the variable to model accuracy and degree of misclassification. Higher values
46 47 48 49 50 51 52 53 54 55 56 57	703	indicate greater predictive importance.
58 59		31

Table 1

Lake	Latitude	Longitude	<i>TP</i> (μg L ⁻¹)	TN (mg L ⁻¹)	Chl a (µg L ⁻¹)	DOC (mg L ⁻¹)	рН	Alkalinity (mg CaCO ₃ L ⁻
Arrowhead	12 297218	_95.051228	26 + 9	0.9 ± 0.2	11 + 6	5.9 ± 0.50		1) 189 7 +
mitau	42.297210	-75.051220	20 - 7	0.7 ± 0.2	11 ± 0	5.7 ± 0.50	8.4 ± 0.1	8.4
Badger	42.586161	-94.192562	58 ± 35	9.4 ± 5.8	34 ± 35	4.4 ± 1.8		169.8 ±
							8.3 ± 0.3	33.4
Beeds	42.770320	-93.236436	76 ± 49	7.5 ± 4.6	48 ± 40	4.0 ± 0.8		189.8 ±
	10.00(00.1	05.000101	22(+ 110	24.06	70 . 25		8.4 ± 0.3	37.0
Black Hawk	42.296334	-95.029191	226 ± 119	2.4 ± 0.6	78 ± 35	9.0 ± 1.3	07102	$187.3 \pm$
Contor	43 412607	05 136203	104 ± 50	1.0 ± 0.2	12 ± 36	10.5 ± 0.6	8.7 ± 0.3	12.1
Center	43.412007	-95.150295	104 ± 30	1.9 ± 0.3	42 ± 30	10.3 ± 0.0	85 ± 02	100.3 ± 4.2
East Osceola	41.032548	-93,742649	196 ± 78	1.9 ± 0.5	80 ± 48	8.8 ± 1.2	0.0 - 0.2	$111.7 \pm$
							8.9 ± 0.6	27.0
Five Island	43.145274	-94.658204	106 ± 51	2.1 ± 0.4	67 ± 38	7.7 ± 1.8		163.5 ±
					9.		8.4 ± 0.2	8.1
George Wyth	42.534834	-92.400362	62 ± 22	1.0 ± 0.2	26 ± 7	4.4 ± 0.3		$142.0 \pm$
							8.4 ± 0.2	28.0
Keomah	41.295123	-92.537482	107 ± 105	1.4 ± 0.7	45 ± 52	6.3 ± 1.2	0.7.04	$116.3 \pm$
0: (41.10(((0	04.42(004	200 + 200	22+12	1.4.4	74112	8.7 ± 0.4	16.6
Orient	41.196669	-94.436084	398 ± 286	2.3 ± 1.3	144 ± 105	7.4 ± 1.3	9.1 ± 0.6	$94.4 \pm$
Lower Gar	43 352299	-95 120186	96 + 35	1.7 ± 0.3	51 + 23	79+12	9.4 ± 0.0	1863+
Lower Gar	-5.552277	-95.120100	<i>y</i> 0 ± <i>y</i> 3	1.7 ± 0.5	$JI \pm 2J$	1.7 ±1.2	8.6 ± 0.1	13.6
Rock Creek	41.736936	-92.851859	115 ± 45	1.7 ± 0.5	53 ± 50	4.9 ± 1.2		148.5 ±
							8.5 ± 0.2	7.5
Silver (Dickinson)	43.439162	-95.336799	161 ± 85	2.2 ± 0.9	35 ± 59	6.9 ± 0.9		170.4 ±
							8.3 ± 0.2	13.5
Silver (Palo Alto)	43.030775	-94.883701	340 ± 206	2.6 ± 0.6	118 ± 60	8.2 ± 2.1		174.9 ±
<u> </u>					10 - 11	2.5 + 2.4	8.8 ± 0.3	28.0
Springbrook	41.775930	-94.466736	38 ± 26	1.8 ± 0.9	18 ± 14	3.5 ± 0.4	04102	$183.5 \pm$
							0.4 ± 0.3	22.0

Ecosystems

Table 2.

	Importance	
Predictor	(IncNodePurity)	
Chl a	6311	
TN	5800	
HIX	4101	
DO	3354	
Precipitation	3243	
$\delta^{13}C_{DIC}$	2672	
BA	2448	Co.
ТР	2363	
Wind gust speed	2281	
DOC	2204	
Wind speed	2166	
Schmidt stability	1487	
Epilimnion temperature	1438	
Site depth	1032	
FI	990	
Thermocline depth	576	

710 Table 3.

1 i culctoi	Importance (MeanDecreaseGini)	
% Wetland	1.46	
% Pasture	1.34	
% Water	0.99	
Z _{max}	0.89	
Watershed to lake area	0.84	
% Agriculture	0.74	

1 ว		
2 3 4	712	Figure captions
5 6	713	
/ 8 9	714	Figure 1. Time series of average daily CO_2 flux (mmol C m ⁻² d ⁻¹) calculated for lakes in this
10 11	715	study and corresponding thermal heatmap visualizing seasonal stratification patterns. Color
12 13	716	legend units are °C. Black lines on flux plots are modeled flux; grey lines are 95% confidence
14 15 16	717	intervals.
17 18	718	
19 20 21	719	Figure 2. Distribution of DOM quality indices measured in this study. (a) Fluorescence index
21 22 23	720	(FI). Indicator of DOM source material. (b) β : α ratio. Index of DOM degradation (c)
24 25	721	Humification index (HIX).
26 27 28	722	
28 29 30	723	Figure 3. Distribution of isotopic composition of dissolved organic carbon (δ^{13} DIC) across lakes
31 32	724	and sampling events. Values between -25 to -30 ‰ indicate heterotrophic degradation of
33 34 25	725	terrestrial organic matter15 to -10 ‰ reflect degradation of bloom organic matter when
35 36 37	726	primary producers are taking up mineral bicarbonate (~ -10 ‰) rather than CO ₂ 8.5 ‰ indicates
38 39	727	atmospheric CO ₂ . Few observations of δ^{13} DIC of atmospheric origin is likely attributable to
40 41	728	rapid fractionation by surface blooms at the air-water interface (e.g., Morales-Williams et al.
42 43 44	729	2017). Values between -10 and 0 ‰ and higher reflect mineral dissolution and methanogenic
45 46	730	fermentation.
47 48	731	Figure 4. Regression tree model visualizing predictors of discrete CO ₂ flux. Terminal node
49 50 51	732	values represent instantaneous flux rates where influx appears on the left, and efflux on the right.
52 53 54 55 56	733	Abbreviations are as follows: TN indicates total nitrogen (mg L ⁻¹), chl.a indicates chlorophyll a
57 58 59		35

3 4	734
5 6	735
7 8 0	736
9 10 11	737
12 13	738
14 15 16	739
10 17 18	740
19 20	741
21 22 23	742
23 24 25	743
26 27	744
28 29 20	745
30 31 32	746
33 34	747
35 36	748
37 38 39	749
40 41	750
42 43	751
44 45 46	752
40 47 48	753
49 50	754
51 52	755
55 55	756
56 57	
58 59	
60	

84	(ug L ⁻¹), DO indicates epilimnetic or surface (integrated 2 m) dissolved oxygen (mg L ⁻¹), HIX
85	indicates the humification index, and BA indicates the beta:alpha index.
86	Figure 5. Classification tree model visualizing static predictors of net CO ₂ flux, indicated as a
87	net source or sink. Abbreviations are as follows: WtoL indicates watershed to lake area ratio,
8	and Z _{max} indicates maximum lake depth.
9	Figure 6. Range of flux values previously reported in literature across trophic state. Data sources
10	and sampling periods can be found in supplemental table S4.
1	
2	
3	
4	
15	
6	
17	
8	
9	
50	
51	
52	
3	
54	
5	
6	

Lake Orient, IA, 28 June 2012 photo credit: Ana Morales-Williams

1151x863mm (72 x 72 DPI)

Lake Keomah, Iowa boat launch, 14 August 2012 photo credit: Ana Morales-Williams

1151x863mm (72 x 72 DPI)