Impacts of AMSU-A, MHS and IASI data assimilation on temperature and humidity forecasts with GSI-WRF over the western United States
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Impacts of AMSU-A, MHS and IASI data assimilation on temperature and humidity forecasts with GSI-WRF over the western United States

Filetype[PDF-1.44 MB]



Details:

  • Journal Title:
    Atmospheric Measurement Techniques
  • Description:
    Using NOAA's Gridpoint Statistical Interpolation (GSI) data assimilation system and NCAR's Advanced Research WRF (Weather Research and Forecasting) (ARW-WRF) regional model, six experiments are designed by (1) a control experiment (CTRL) and five data assimilation (DA) experiments with different data sets, including (2) conventional data only (CON); (3) microwave data (AMSU-A + MHS) only (MW); (4) infrared data (IASI) only (IR); (5) a combination of microwave and infrared data (MWIR); and (6) a combination of conventional, microwave and infrared observation data (ALL). One-month experiments in July 2012 and the impacts of the DA on temperature and moisture forecasts at the surface and four vertical layers over the western United States have been investigated. The four layers include lower troposphere (LT) from 800 to 1000 hPa, middle troposphere (MT) from 400 to 800 hPa, upper troposphere (UT) from 200 to 400 hPa, and lower stratosphere (LS) from 50 to 200 hPa. The results show that the regional GSI–WRF system is underestimating the observed temperature in the LT and overestimating in the UT and LS. The MW DA reduced the forecast bias from the MT to the LS within 30 h forecasts, and the CON DA kept a smaller forecast bias in the LT for 2-day forecasts. The largest root mean square error (RMSE) is observed in the LT and at the surface (SFC). Compared to the CTRL, the MW DA produced the most positive contribution in the UT and LS, and the CON DA mainly improved the temperature forecasts at the SFC. However, the IR DA gave a negative contribution in the LT. Most of the observed humidity in the different vertical layers is overestimated in the humidity forecasts except in the UT. The smallest bias in the humidity forecast occurred at the SFC and in the UT. The DA experiments apparently reduced the bias from the LT to UT, especially for the IR DA experiment, but the RMSEs are not reduced in the humidity forecasts. Compared to the CTRL, the IR DA experiment has a larger RMSE in the moisture forecast, although the smallest bias is found in the LT and MT.
  • Source:
    Atmos. Meas. Tech., 8, 4231–4242
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • File Type:

Supporting Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26