A Classification Of Streamflow Patterns Across The Coastal Gulf Of Alaska
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

A Classification Of Streamflow Patterns Across The Coastal Gulf Of Alaska

Filetype[PDF-20.68 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Water Resources Research
  • Personal Author:
  • NOAA Program & Office:
  • Sea Grant Program:
  • Description:
    Streamflow controls many freshwater and marine processes, including salinity profiles, sediment composition, fluxes of nutrients, and the timing of animal migrations. Watersheds that border the Gulf of Alaska (GOA) comprise over 400,000 km2 of largely pristine freshwater habitats and provide ecosystem services such as reliable fisheries for local and global food production. Yet no comprehensive watershed-scale description of current temporal and spatial patterns of streamflow exists within the coastal GOA. This is an immediate need because the spatial distribution of future streamflow patterns may shift dramatically due to warming air temperature, increased rainfall, diminishing snowpack, and rapid glacial recession. Our primary goal was to describe variation in streamflow patterns across the coastal GOA using an objective set of descriptors derived from flow predictions at the downstream-most point within each watershed. We leveraged an existing hydrologic runoff model and Bayesian mixture model to classify 4,140 watersheds into 13 classes based on seven streamflow statistics. Maximum discharge timing (annual phase shift) and magnitude relative to mean discharge (amplitude) were the most influential attributes. Seventy-six percent of watersheds by number showed patterns consistent with rain or snow as dominant runoff sources, while the remaining watersheds were driven by rain-snow, glacier, or low-elevation wetland runoff. Streamflow classes exhibited clear mechanistic links to elevation, ice coverage, and other landscape features. Our classification identifies watersheds that might shift streamflow patterns in the near future and, importantly, will help guide the design of studies that evaluate how hydrologic change will influence coastal GOA ecosystems.
  • Keywords:
  • Source:
    Water Resources Research 56(2): e2019WR026127
  • DOI:
  • Sea Grant Document Number:
    AKU-R-20-001
  • Document Type:
  • Place as Subject:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1