Operational performance of a combined Density- and Clustering-based approach to extract bathymetry returns from LiDAR point clouds
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Operational performance of a combined Density- and Clustering-based approach to extract bathymetry returns from LiDAR point clouds

Filetype[PDF-11.61 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    International Journal of Applied Earth Observation and Geoinformation
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Conventional techniques for extracting bathymetric soundings from LiDAR point clouds are at best semi-automated and require considerable manual effort. An algorithm that couples a widely used sonar data processing method with a newly developed machine-learning(ML)-based algorithm was evaluated for accuracy and potential operationalisation. Data representing an operationally realistic range of environmental and data conditions comprised 103 500 m-by-500 m data tiles for method development/calibration and 20 tiles for validation located in the Florida Keys. Tiles are processed individually to classify each LiDAR pulse return (“sounding” in hydrographic terminology) as bathymetry or not. Compared to a reference classification an average agreement of about 90% was produced for the calibration and validation data sets, and accuracy varied depending on ocean bottom and data conditions. The average false negative rate – the most important metric in hydrographic mapping – was about 5%. Processing time for tiles containing the average number of soundings (seven million) on a desktop computer was approximately 100 min. The algorithm does not require in situ ground-“truth” data for training or calibration, although its adaptation to other geographic and data conditions might require data-guided adjustment of ML tuning parameters.
  • Keywords:
  • Source:
    International Journal of Applied Earth Observation and Geoinformation, 107: 102699
  • DOI:
  • Document Type:
  • Funding:
  • Place as Subject:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1