Multi-Scale Atmospheric Emissions, Circulation and Meteorological Drivers of Ozone Episodes in El Paso-Juárez Airshed
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Multi-Scale Atmospheric Emissions, Circulation and Meteorological Drivers of Ozone Episodes in El Paso-Juárez Airshed

Filetype[PDF-4.75 MB]



Details:

  • Journal Title:
    Atmosphere
  • Description:
    Ozone pollution has been prevalent in the El Paso-Juárez Airshed (EPJA), especially in the past few decades, and it has been on the rise recently. The spatial and temporal distribution of the tropospheric ozone and several key meteorological factors that influence its concentration has not been adequately understood. Therefore, this investigation comprehensively examined 57 high and 48 low ozone episodes occurring in this region during 2013–2019. We found that the interannual ozone concentration in EPJA was strongly affected by anthropogenic emissions. On the other hand, seasonal ozone variations are due to meteorological variables (among them, solar radiation, planetary boundary layer, and winds) in addition to biogenic emission factors. High ozone events are characterized by calm winds, shallow planetary boundary layer (PBL), whereas low ozone events were marked with strong winds, precipitation, and deep PBL. Synoptic and mesoscale wind patterns for these ozone episodes were identified and characterized. Most of the high ozone episodes occurred when an anticyclonic circulation aloft was associated with a 500-mile middle and upper tropospheric high-pressure region over the EPJA. During these events, stable air masses with convective available potential energies (CAPE) values of less than 450 J/kg were found. The importance of surface topography is illustrated by the fact that stations close to the Rio Grande River show a bimodal distribution of wind direction according to the valley axis. High ozone episodes occur with a surface easterly wind that is decoupled from winds above the Franklin mountains.
  • Source:
    Atmosphere, 12(12), 1575
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • File Type:

Supporting Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26