Evaluating Precursor Signals for QLCS Tornado and Higher Impact Straight-Line Wind Events
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Evaluating Precursor Signals for QLCS Tornado and Higher Impact Straight-Line Wind Events

Filetype[PDF-5.93 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Operational Meteorology
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Tornadoes produced by quasi-linear convective systems (QLCS) present a significant challenge to National Weather Service warning operations. Given the speed and scale at which they develop, different methods for tornado warning decision making are required than what traditionally are used for supercell storms. This study evaluates the skill of one of those techniques—the so-called three-ingredients method—and produces new approaches.

    The three-ingredients method is found to be reasonably skillful at short lead times, particularly for systems that are clearly linear. From the concepts and science of the three-ingredients method, several new combinations of environmental and radar parameters emerge that appear slightly more skillful, and may prove easier to execute in real time. Similar skill between the emerging methods provides the forecaster with options for what might work best in any given scenario.

    A moderate positive correlation with overall wind speed with some radar and environmental variables also is identified. Additionally, mesoscale convective vortices and supercell-like features in QLCS are found to produce tornadoes at a much higher rate than purely linear systems.

  • Source:
    J. Operational Meteor., 9(5), 62-75
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26