i
Response Of The Insulin-Like Growth Factor-1 (Igf1) System To Nutritional Status And Growth Rate Variation In Olive Rockfish (Sebastes Serranoides)
-
2018
-
-
Source: Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 224: 42-52
Details:
-
Journal Title:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
-
Personal Author:
-
NOAA Program & Office:
-
Sea Grant Program:
-
Description:Growth performance in vertebrates is regulated by environmental factors including the quality and quantity of food, which influence growth via endocrine pathways such as the growth hormone (GH)/insulin-like growth factor somatotropic axis. In several teleost fishes, circulating concentrations of insulin-like growth factor-1 (Igf1) correlate positively with growth rate, and it has been proposed that plasma Igf1 levels may serve as an indicator of growth variation for fisheries and aquaculture applications. This study tested whether plasma Igf1 concentrations might serve as an indicator of somatic growth in olive rockfish (Sebastes serranoides), one species among dozens of rockfishes important to commercial and recreational fisheries in the Northern Pacific Ocean. Juvenile olive rockfish were reared under food ration treatments of 1% or 4% wet mass per d for 98 d to experimentally generate variation in growth. Juvenile rockfish in the 4% ration grew 60% more quickly in mass and 22% faster in length than fish in the 1% ration. Plasma Igf1 levels were elevated in rockfish under the 4% ration, and individual Igf1 levels correlated positively with growth rate, as well as with individual variation in hepatic igf1 mRNA levels. Transcripts encoding the Igf binding proteins (Igfbps) igfbp1a and igfbp1b were also at higher abundance in the liver of rockfish in the 1% ration treatment, while mRNAs for igfbp5a and igfbp5b were elevated in the skeletal muscle of 4% ration fish. These findings support the use of plasma Igf1 as a physiological index of growth rate variation in rockfish.
-
Keywords:
-
Source:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 224: 42-52
-
DOI:
-
Document Type:
-
Rights Information:Accepted Manuscript
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: