The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Characterization of floods in the United States
-
2017
-
Source: J Hydrology 548: 524-535
Details:
-
Journal Title:Journal of Hydrology
-
Personal Author:
-
NOAA Program & Office:
-
Description:Floods have gained increasing global significance in the recent past due to their devastating nature and potential for causing significant economic and human losses. Until now, flood characterization studies in the United States have been limited due to the lack of a comprehensive database matching flood characteristics such as peak discharges and flood duration with geospatial and geomorphologic information. The availability of a representative and long archive of flooding events spanning 78 years over a variety of hydroclimatic regions results in a spatially and temporally comprehensive flood characterization over the continental U.S. This study, for the first time, employs a large-event database that is based on actual National Weather Service (NWS) definitions of floods instead of the frequently-adopted case study or frequentist approach, allowing us to base our findings on real definitions of floods. It examines flooding characteristics to identify how space and time scales of floods vary with climatic regimes and geomorphology. Flood events were characterized by linking flood response variables in gauged basins to spatially distributed variables describing climatology, geomorphology, and topography. The primary findings of this study are that the magnitude of flooding is highest is regions such as West Coast and southeastern U.S. which experience the most extraordinary precipitation. The seasonality of flooding varies greatly from maxima during the cool season on the West Coast, warm season in the desert Southwest, and early spring in the Southeast. The fastest responding events tend to be in steep basins of the arid Southwest caused by intense monsoon thunderstorms and steep terrain. The envelope curves of unit peak discharge are consistent with those reported for Europe and worldwide. But significant seasonal variability was observed in floods of the U.S. compared to Europe that is attributed to the diversity of causative rainfall ranging from synoptic scales with orographic enhancements in the West Coast, monsoon thunderstorms in the desert Southwest, to land-falling tropical storms and localized, intense thunderstorms in the Southeast.
-
Keywords:
-
Source:J Hydrology 548: 524-535
-
DOI:
-
Document Type:
-
Funding:
-
Rights Information:Accepted Manuscript
-
Rights Statement:The NOAA IR provides access to this content under the authority of the government's retained license to distribute publications and data resulting from federal funding. While users may legally access this content, the copyright owners retain rights that govern the reproduction, redistribution, and re-use of this work. The user is solely responsible for complying with applicable copyright law.
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: