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Abstract 

As oil transport increasing in the Texas bays, greater risks of ship collisions will 

become a challenge, yielding oil spill accidents as a consequence. To minimize the 

ecological damage and optimize rapid response, emergency managers need to be 

informed with how fast and where oil will spread as soon as possible after a spill. The 

state-of-the-art operational oil spill forecast modeling system improves the oil spill 

response into a new stage. However uncertainty due to predicted data inputs often elicits 

compromise on the reliability of the forecast result, leading to misdirection in 

contingency planning. Thus understanding the forecast uncertainty and reliability 

become significant. In this paper, Monte Carlo simulation is implemented to provide 

parameters to generate forecast probability maps. The oil spill forecast uncertainty is 

thus quantified by comparing the forecast probability map and the associated hindcast 

simulation. A HyosPy-based simple statistic model is developed to assess the reliability 

of an oil spill forecast in term of belief degree. The technologies developed in this study 
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create a prototype for uncertainty and reliability analysis in numerical oil spill forecast 

modeling system, providing emergency managers to improve the capability of real time 

operational oil spill response and impact assessment. 

Keywords: Uncertainty quantification, forecast reliability, oil spill modeling, HyosPy, 

Monte Carlo simulation, probability map
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1. Introduction 

When an oil spill occurs at late night in heavily trafficked shipping channels, 

operational oil spill forecast modeling system provides the spill transport predictions 

needed for rapidly deploying emergency responses equipment, e.g. booms, dispersant, 

or skimmer boats. As moving equipment around the margins of an estuary or bay can be 

time consuming, information on the uncertainty of the forecast spill path could be 

insightful in deciding whether equipment should be immediately committed or moved 

to a central location (relative to possible spill paths) to await predictions with greater 

confidence. Unfortunately, such data is not generally available from existing operational 

oil spill modeling systems. 

 

1.1 Uncertainty in oil spill modeling 

The cause of oil spill forecast uncertainty ranges from the modeling system itself to 

the forecast model inputs. At the system limit are the interdisciplinary sub-models 

including chemistry, turbulence, hydrodynamics, meteorology, and hydrology - 

providing a 2D or 3D oil spill forecast trajectory (You and Leyffer 2011; Zelenke et al. 

2012; Mackay et al. 1980; Huang 1983; ASA 1997; Reed 2000). Although some 

previous studies (e.g. Price et al. 2004; Elliott and Jones 2000; Reinaldo and Henry 

1999) proved that numerical formulations would have influence on the performance of 

oil spill modeling, the forecast uncertainty in this end has been reduced significantly as 

the evolution of the state-of-the-art models and parallel computing power. At the 

forecast inputs limit are weather and hydrodynamic forecast time series (e.g. wind and 

tidal force) required by the oil spill modeling. Presently weather forecasts have qualified 

predictive capabilities for periods up to 4 days, but it becomes more and more unstable 
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as time progresses (Sebastiao and Soares 2007; Sebastiao and Soares 2006). The 

forecast data derived from operational models, such as Texas coastal wind forecasts 

from the National Centers for Environmental Prediction (NCEP) Eta model (NECP 

2015), might have poorer predictive skills for an even shorter forecast period. Unlike 

the uncertainty from the modeling system limit, the uncertainty from forecast data is 

inevitable. 

NOAA’s GNOME (General NOAA Operational Modeling Environment) oil spill 

transport model developed its oil spill forecast uncertainty assessment package by 

undertaking self-made assumptions, i.e. modelers should have to guess what the 

uncertainties of inputs are. The key is to perturb different movers by slightly changing 

the magnitude or the direction of winds and currents input vectors (Zelenke et al. 2012). 

The Oil Spill Risk Analysis (OSRA) model estimates the oil spill forecast uncertainty 

by generating an ensemble of oil spill trajectories over many years of hydrodynamic and 

meteorological input fields. The forecast uncertainty is assessed by analyzing the 

difference of the simulated spills under the assumption that the occurrence rates of the 

spills and the inputs will probably like those that might happen in the future (Price et al. 

2003). Drifter modeling along with statistical post-processing is also a practical 

approach to estimate the forecast uncertainty in most recent studies (Sebastiao and 

Soares 2006; Price et al. 2006). Many of these methods advocate a minimum regret 

strategy to deliver the predicted data to the oil spill modeling system (Galt 1997; Galt 

and Payton 1999). However, all of these methods do not provide explicit information of 

what can go wrong and how much is it to go wrong, of which are relatively more 

important issues in operational oil spill forecast modeling. Hence more elaborate 
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analysis is required to quantify the oil spill forecast uncertainty so that oil spill 

managers could have a general idea of the forecast quality. 

 

1.2 Reliability of oil spill forecast 

Uncertainty in forecast modeling is pervasive; however in most operational 

engineering, economics, and nature science fields, numerical simulations based on 

forecast data are the only sources for decision making before hindcast or observed data 

is available, especially for issues that rapid response is critical. As to oil spill accidents, 

the observed data is always rare when a spill occurs. The realization of forecast 

uncertainty in operational oil spill modeling system draws concerns for oil spill 

managers, who pay high attention to the reliability of the forecast results. Thus, facing 

to the forecast results of an oil spill modeling, oil spill managers would always ask: how 

likely is it to go wrong? Or how much can I trust it? This is another uncertainty issue 

that pertains to the confidence or reliability of a numerical oil spill forecast. 

Reliability is the most important forecast quality that measures the degree of the 

likelihood that a forecast captures the actual event being predicted. Reliability 

assessment generally involves ensemble forecast, because real physics can only provide 

a single outcome for a particular forecast, which is impossible to form a probabilistic 

representation of reliability (Tippett et al. 2014). There are many ways of quantifying 

forecast reliability. Brown et al. 1997 assessed the reliability of the power distribution 

system to momentary interruptions and storms by using Monte Carlo simulation. 

Weisheimer and Palmer 2014 and Ho et al. 2013 analyzed the reliability of seasonal 

climate forecasts based on reliability diagrams which are tools to visualize and quantify 

the statistical reliability of a forecast system. Winkler et al. 2010 examined the 
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reliability of power system during hurricanes via network topology. There are few 

studies concentrating on the reliability of oil spill modeling (e.g. Abascal et al. 2010; 

Wang and Zhou 2009), however, these studies aim at specific model or spill event, 

which simply cannot be applied over a broader sense. A more general approach is 

required for present operational oil spill forecast modeling where the state-of-the-art 

numerical models and forecast data sources are changing all the time. 

This paper defines several new terms to quantify forecast uncertainty in operational 

oil spill modeling system. Monte Carlo simulation is applied to evaluate forecast errors 

so that multiple pseudo-forecast series can be generated to form a time-evolution of 

forecast probability map for uncertainty quantification. The Hydrodynamic and Oil Spill 

Python (HyosPy) (Hou and Hodges 2014; Hou et al. 2015; Hodges et al. 2015) is 

exploited to assess forecast reliability of oil spill predictions in a more general sense. 

 

2. Methods 

2.1 Forecast uncertainty probability map (FUPM) 

Oil spill forecast uncertinty has two facets - temporal and spatial. Temporal 

uncertainty originates from the arrival time discrepancy of the surface oil at a specific 

location (e.g. Abascal et al. 2010); spatial uncertainty emerges from the potential 

transport track of the spill (e.g. Nelson et al. 2015 for large scale oil spill spatial 

uncertainty analysis; Sebastiao and Soares 2006 analyzed smaller cases in a coastal zone 

via a oil spill model). 

From an operational response perspective, the critical question within a bay or 

estuary is when and where will the spill hit the shoreline? The hit time can be defined as 

the time that a forecast predicts the spill to hit a particular stretch of beach and the hit 
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location as the location of beaching. For a given forecast period (T), not all spills will 

hit the shoreline, so it is also useful to consider a simply binary discriminator of 

beaching/no beaching. The forecast uncertainty can be divided into four categories, that 

we will quantify as metrics: 

1. Hit time uncertainty – Ut : the deviation of the transport time between the hindcast 

and forecast when one or both of them are beaching. 

2. Hit location uncertainty – Ul : the deviation of possible or simulated-definite 

landing positions between the hindcast and forecast when one or both of them are 

beaching. 

3. Transport area uncertainty – Ua : the deviation of transport directions (represented 

by area for ease of calculation) between the hindcast and forecast. 

4. Transport speed uncertainty – Us : the deviation of transport speed between the 

hindcast and forecast. 

Quantifying the above metrics requires assessing the difference between observations 

and the ensemble of possible forecasts, i.e. a forecast probability map. These metrics 

could be developed/used in three different ways: (1) as an a priori exercise with field 

drifter data as observations to evaluate likely uncertainty in models; (2) as a operational 

task during a spill, where the latest spill observations are used to rapidly assess evolving 

uncertainty; or (3) as a model-model comparison where hindcast data driving the model 

represents the observations, and a range of forecast data driving the model provides the 

ensemble. The present work demonstrates the technique using the model-model 

approach, as we do not have access to a data set of drifters or observed oil spill 

evolution. 
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The forecast probability map is composed of multiple possible forecasts in the same 

simulation period. However, a single simulation period could have only one forecast, 

hence pseudo-forecast need to be created. In this work, the pseudoforecast is developed 

by identifying input forecast error (εk) based on Monte Carlo simulation. Specifically, 

2

1

1
( )

N

k ik ik

i

f h
N

ε
=

= −∑                                                (1) 

where k denotes input class (i.e. wind, tide, river flow); fik is the input forecast time 

series; hik is the input hindcast time series; i = 1, 2, ...N; N is the number of records 

within the input time series. 

The probability density function of εk, that is PDF(εk), is obtained by applying Monte 

Carlo simulation on εk based on multiple sets of input forecast/hindcast time series in 

different T. Thus, the pseudo-forecast input time series f’ik for a given T is able to create 

by adding back a random error generated based on PDF(εk) to the fik for each record: 

rand[-1  1] rand[PDF( )]
ik ik k

f f or ε′ = + ×                                 (2) 

where rand[ ] is the random operator that produces random number accordingly. Figure 

1 illustrates the mechanism of the pseudo-forecast time series generation. Assuming εk 

follows a normal distribution as the green curves indicated, the purple curve shows the 

track of the original forecast time series fik, with which the pseudo-forecast time series 

f’ik could be generated. The blue dotted lines represent the boundaries of 99.7% 

confidence intervals ( ± 3 standard deviations away from the fik) of all the original 

forecast data points, that is, there is a 93% probability that the new generated pseudo-

forecast time series track is within the boundaries if N = 24. 
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Fig. 1. Pseudo-forecast time series generation mechanism 

 

The forecast probability map can be generated by running multiple models together 

in the same T based on corresponding different sets of pseudo-forecast input time series. 

Figure 2 shows a simple example of three pseudo-forecasts in the same T. The area oab 

is the representation of the ensemble of pseudo-forecasts. For illustrative purpose, 

diffusion effects are not considered in this example. 
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Fig. 2. Forecast probability map example. Position o is the initial spill location. The 

green, orange, and dark blue curves represent three different pseudo-forecasts. 

 

2.2 Different Benching Scenarios 

A forecast probability map consists of an approximation of ensemble of pseudo 

forecasts. Given a forecast probability map and the associated hindcast simulation, the 

oil spill forecast uncertainty can be quantified by evaluating the forecast uncertainty 

metrics according to two major possible beaching conditions: (1) forecast of non-

beaching and (2) forecast beaching; which are accompanied by two possible 

observations: (a) observation of non-beaching and (b) observation of beaching. 

1. Forecast of non-beaching and observation of non-beaching 

Under this condition, both the ensemble of pseudo-forecasts (oab) and the observed 

track (oc) do not land at the beach within T. There are four logical cases where this 
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might occur: (1) oc is inside the range of oab but outside the ab boundary (Figure 3a), (2) 

oc falls entirely within the range of oab (Figure 3b), (3) oc falls partially within the 

range of oab but crosses over one (or more) of the lateral boundaries (Figure 3c), and (4) 

oc does not go through any part of oab (Figure 3d). For all the four cases, Ut and Ul, are 

defined to be 0 as these uncertainties require either actual or predicted beaching. For the 

cases in Figure 3a and Figure 3b, Ua is defined as 0 since oc stays inside the bounds of 

oab, i.e. there is no deviation of transport directions between the hindcast and forecasts; 

for cases in Figure 3c and Figure 3d, Ua is defined as: 

exceed
a

oab

A
U

A
=                                                     

(3) 

where Aexceed denotes the area that oc exceeds oab, that is area of qbc in Figure 3c, and 

area of obc in Figure 3d; Aoab is the area of oab. 

  For case (1), Figure 3a, Us is defined as: 

1 exceed
s

median

D
U

V T
=                                               

(4) 

where Vmedian is the median speed of the pseudo-forecast spills within T; Dexceed is the 

distance of the outermost observation point to oab, that is cp in Figure 3a. For cases (2), 

(3) and (4) Us is defined as 0 because either the forecast speed is reasonable (Figure 3b), 

or the uncertainty is dominated by Ua (Figures 3c and d). 
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(a)                                                            (b) 

 

(c)                                                            (d) 

Fig. 3. Forecast of non-beaching and observation of non-beaching scenario 

 

2. Forecast of non-beaching and observation of beaching 

In this situation, oab does not intersect the beach, while oc is observed to intersect the 

beach within T. Three possible cases may happen: (1) oc is bounded within oab (Figure 

4a), (2) oc does not go through any part of oab (Figure 4b), (3) oc falls partially within 

the range of oab but crosses over one (or more) of the lateral boundaries (Figure 4c). In 

this setting, Ut is declared for all cases as: 
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                                                                0
t

t T
U

T

−=                                                     (5) 

where t0 is the observation track hit time. 

Ul is defined as 0 in case (1) because oc does not go beyond the range of the potential 

landing boundary of the pseudo-forecasts de; for case (2) and (3), Ul is defined as: 

MIN( d , d )
d e

c c
l

median

s s
U

L
= ∫ ∫

                                          (6) 

where Lmedian is the median curve length of the pseudo-forecast tracks. 

Ua is defined as 0 in case (1) since oc is entirely inside the bounds of oab; for case (2) 

and (3), Ua is defined the same as cases in Figure 3c and Figure 3d based on Equation 3. 

Us is 0 in case (2) and (3); for case (1), Us has the same defination as the case in Figure 

3a based on Equation 4. 

 

(a)                                                            (b) 
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(c) 

Fig. 4. Forecast of non-beaching and observation beaching scenario. d and e denote 

potential landing boundary points for the ensemble of pseudo-forecasts. 

 

3. Forecast beaching and observation of non-beaching 

In this scenario, the observed oc does not intersect the beach but the predicted oab 

does. Three possible cases may happen: (1) oc is entirely inside oab (Figure 5a), (2) oc 

is entirely outside oab (Figure 5b), (3) oc falls partially within the range of oab but 

crosses over one (or more) of the lateral boundaries (Figure 5c). For all cases within this 

seneario, Ut is defined as: 

median
t

T t
U

T

−=                                              

(7) 

where tmedian is the median hit time of the pseudo-forecast spills. 

Ua is defined as 0 in case (1); for case (2) and (3), Ua is defined the same as cases in 

Figure 3c and Figure 3d based on Equation 3. Since oc does not land the beach, Ul and 

Us are defined to be 0 for all cases. 
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(a)                                                            (b) 

 

(c) 

Fig. 5. Forecast beaching and observation of non-beaching scenario 

 

4. Forecast of beaching and observation of beaching 

It might also happen that both of oc and oab intersect the beach within T. In this 

circumstance, three possible cases may happen: (1) oc is entirely bounded within oab 

(Figure 6a), (2) oc is entirely outside oab (Figure 6b), (3) oc falls partially within the 

bound of oab but crosses over one (or more) of the lateral boundaries (Figure 6c). For 

all cases, Us is defined as 0; Ut is defined as: 
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0 median
t

t t
U

T

−=                                                

(8) 

Ul is set as 0 in case (1); for cases (2) and (3), UL is defined as: 

MIN( d , d )
b a

c c
l

median

s s
U

L
= ∫ ∫

                                      

(9) 

Ua is defined as 0 in case (1); for case (2) and (3), Ua is defined the same as cases in 

Figure 3c and Figure 3d based on Equation 3. 

 

(a)                                                            (b) 
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(c) 

Fig. 6. Forecast beaching and observation beaching scenario 

2.3 Derivation of the HFRA method 

The HyosPy Forecast Reliability Assessment (HFRA) is a posteriori method based on 

the comparison of the hindcsat and prior forecast simulations. HFRA applies the 

HyosPy system (Hou et al. 2015; Hodges et al. 2015; Hou and Hodges 2014) to provide 

data for oil spill forecast reliability assessment in a statistical manner. Figure 7 shows 

the mechanism of HyosPy simulation within a forecast period T. The first model starts 

at time 0, running in a forecast mode (i.e. using all forecast wind, tide and river inflow 

data). The second model starts at t when t hours of hindcast are available; the second 

model starts from the same start time, so the model is in hindcast mode for the interval 

[0,t] hours and then forecast mode for [t,T] hours. The third model (started at time 2t) 

does not need to run the time interval from [0,t] as it would be identical to the second 

model; a “hotstart” feature is used to use the results of the second model at the end of its 

hindcast (t) as the starting point for the third model, which is in hindcast for the interval 

[t, 2t] and forecast from [2t,T]. This pattern is continued until the final run is entirely in 

hindcast mode. In the present work, the complete hindcast simulation provides the 

benchmark for comparing the reliability of the forecasts. The methods developed herein 

could be applied with observed spill or drifter data for a better assessment of model 

reliability. 
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Fig. 7. A single forecast period HyosPy simulation. Light yellow represents forecast 

simulation. Red represents hindcast simulation. Green denotes the “hotstart” time, i.e. 

the hindcast simulation which has already been computed by the prior model. 

To measure the ensemble forecast uncertainty within a complete single HyosPy 

simulation, an Error Index (EI) is designated based on the Minimum Regret strategy to 

minimize the worst-case regret (Galt 1997; Galt and Payton 1999). Specifically, given 

the last model run as benchmark, EI adds up all the likely error caused by different 

forecasts at each time step. The likely error herein is represented by the Mean Distance 

Error Index (MDEI) and the Dispersion Error Index (DEI) to measure the average 

distance and dispersion area difference (respectively) for the modeled spill particles at 

each time step between a test case and a control case. The MDEI and DEI for each time 

step p = 1, 2, 3...n are defined as 

,1

m

p qq

p

e
MDEI

mS

==
∑

                                  

(10) 

p

p

A
DEI

S

∆
=                               

(11) 

where m is the number of oil particles for each time step; ,p q
e  denotes the distance of 

corresponding particle q at time step p between two test cases; 
p

A∆  is the particle 

dispersion area difference at time step p between two test cases; S is the curve length of 

the spill track in the control case. Figure 8 illustrates the quantification process of MDEI 

and DEI based on a simple two-case simulation (a test case and a control case). 
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Fig. 8. MDEI and DEI quantification schematic. Each black dot represents an oil spill 

particle; red triangles denote central locations of particles at each time step; the orange 

circles compose the control case; the purple circles compose the test case; the length of 

the green dash line is S; the length of the blue dash line is the mean distance for the 

modeled spill particles at each time step between the test case and the control case, i.e. 

MDEIp×S;; the area of yellow portion is 
p

A∆ . 

Such that 
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1
2 2

, ,

1

M

p j p j p

j

EI MDEI DEI
−

=

= +∑                                

(12) 

where j = 1,2,3, ...M − 1; M is the number of models within T. 

The oil spill forecast reliability is calculated based on the Critical Error Index (CEI) 

with multiple sets of EI as statistic inputs. CEI is set as the tolerance, i.e. upper limit of 

allowable error of a reliable forecast. Because EI is the accumulation of n − 1 models’ 

error metrics, CEI is defined with the same scale of EI based on the n − 1 cumulative of 

the Spill Scale Benchmark Index (SSBI) which is derived from the boom containment 

lengths of a typical accident. The SSBI is defined as 

B
SSBI

L
=                                          

(13) 

where B denotes the theoretical length of boom required to contain free floating oil and 

L is the length of boom that were actually deployed. More specifically, B = 1.25H, 

where H is the amount of oil spill in m3 (PERSGA/UNEP 2003). 

Such that 

( 1)CEI n SSBI= − ×                                     (14) 

With the idea that EI below CEI is within the tolerance, the forecast reliability η is 

designed as: 

under

total

N

N
η =                                               (15) 

where Nunder denotes the number of EI curves that remain under CEI; Ntotal is the total 

number of EI curves. 
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As a simple example, Figure 9 shows the forecast reliability analysis process with 3 

different EI curves. Before T1, all of the three curves are under CEI, thus the η is 100% 

during 0 to T1; during T1 to T2, EI3 has gone beyond CEI, hence, the η decreases to 67% 

(2/3); during T2 to T3, only EI1 remains under CEI, thus, the η reduces to 33% (1/3); 

after T3, none of the curves are remaining under CEI, so that the η is 0%. 

 

Fig. 9. Forecast reliability example 

 

3. Case study 

3.1 HyosPy setup 

As discussed in prior section, a single instance of HyosPy running provides multiple 

forecasts and hindcasts within forecast period T. A series of continuous HyosPy 

simulations would yield statistic sample for EI evaluation in HFRA, and Monte Carlo 

simulations to generate pseudo-forecast series for forecast uncertainty analysis. 

In this study, a 48-hr HyosPy simulation with 17 individual model runs at a 3-hr 

interval (i.e. the first model use complete forecast data; the last one use complete 
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hindcast data) is used for demonstration (Table 1). This demonstration uses the SELFE - 

GNOME system, which was previously integrated into HyosPy (Hou et al. 2015; Hou 

and Hodges 2014). 

 

 

Table 1. Sequenced model operations 

Model # Start time Hindcast hour Forecast hour 

1 0:00 0 hour 48 hours 

2 3:00 3 hours 45 hours 

3 6:00 6 hours 42 hours 

… … … … 

17 (+2d) 0:00 48 hours 0 hour 

 

The study region is the Corpus Christi Bay portion of the Texas coastal bend region, 

which is simulated in the Texas General Land Office - Texas Water Development Board 

(TGLO-TWDB) operational oil spill system. Corpus Christi Bay (Figure 10) is a 

shallow (3m average depth) embayment that is bisected by a shipping channel dredged 

to 15m depth serving the Port of Corpus Christi. The bay is microtidal with typical daily 

excursions of O(0.5m); however, barotropic tides associated with weather system can 

cause additional displacements over several days. Wind-driven flows in the bay are 

dominated by a southerly sea breeze in the afternoon during summer months, but the 

pattern is periodically disrupted by weather systems with northerly winds (Ward 1997) 
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Fig. 10. Corpus Christi Bay 

The model grid, Figure 11, was designed by TWDB as part of their modeling 

program. The computational domain extends from Aransas Bay in the north to just 

below Baffin Bay in the south, which includes all of Corpus Christi Bay and its 

neighbors Nueces Bay and Oso Bay. A small offshore portion of the Gulf of Mexico is 

included for enforcing tidal boundary conditions. To damp wave reflections that would 

occur if river inflows were enforced directly at the river mouths, large dummy domains 

(rectangular areas in Figure 11a) are included for each river. Figure 11b shows the 

portion of the model grid for Corpus Christi Bay discretized by triangular elements in 

the horizontal direction. The entire model grid contains 23286 nodes (vertex of 

triangular element) and 41866 elements. The hydrodynamic model time step is set as 
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180 seconds; the oil spill transport model time step is 900 seconds. Using such setup a 

48-hr hydrodynamic simulation takes about 20 minutes of parallel running with 2 logic 

processors based on MPI protocol on a 24-processor 64 GB-RAM Linux workstation. 

The corresponding oil spill simulation takes less than 10 seconds. 

 

 

(a) 
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(b) 

Fig. 11. SELFE horizontal model grid for Corpus Christi bay 

Two major sources of forecast model inputs are taken into consideration – wind and tide. 

Wind forecast are derived from the NAM Model of the NCEP (NECP 2015). The 

Oceanography Department of Texas A&M University (TAMU) configure the NAM outputs and 

provide the TWDB with wind hindcast/forecast data from a TAMU server which contains wind 

data for 241 sites (Figure 12). These data could be used to develop a spatially-varying wind 

field for the hydrodynamic model; however for the present demonstration, data from a single 

site (Corpus Christi Bay site 051) are used for a spatially-uniform wind field over the study 

area. The TAMU server provides wind hindcasts for two months and 4-day wind forecasts on a 

3-hour update cycle. Tidal data are obtained from the Texas Coastal Ocean Observation 

Network (TCOON). This network includes a system of tidal gages along the Texas coast with 

rapid data availability online. Water level elevations are typically available on six minute 
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intervals with a real-time lag on the order of 10 minutes. The adjusted harmonic tidal elevation 

forecast of gage at Bob Hall Pier is used as the offshore water surface elevation to drive the 

hydrodynamic model (TCOON 2015). 

 

Fig. 12. Distribution of wind data locations 

 

3.2 Forecast uncertainty probability map implementation 

The 17-model HyosPy simulation was started on 7/26/2014 and continuously run for 

a sequence of 2-day forecast simulation run for 2-day forecast periods until 4/11/2015. 

Because data servers were intermittently down during this time, a total of 66 complete 

simulation sets out of 128 possible were created. For this investigation, an imaginary oil 

spill location is selected close to the shipping channel at [27.812 N, -97.309 W] (or 

UTM 666580m E, 3077520m N, zone 14). 
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The 66 runs provide forecast/hindcast data series for the input forecast error εk (see 

Equation 1) assessment based on Monte Carlo simulation. Figure 13 shows the 

modeling results of east-west wind forecast error εwindx (Figure 13a), northsouth wind 

forecast error εwindy (Figure 13b), and tide elevation forecast error εelev (Figure 13c). It 

can be seen that εwindx and εwindy follow a normal distribution approximately; while a 

student-T distribution is a better fit for εelev since it has a fatter tail, i.e. more extreme 

events.. 

 

(a) Distribution of εwindx                                (b) Distribution of εwindy 
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(c) Distribution of εelev 

Fig. 13. Monte Carlo simulation for εk. The red dash line is the “best fit” curve (PDF 

curve); the yellow line demonstrates the “best value” (mode of the PDF). 

 

We chose the 8/5/2014 - 8/7/2014 HyosPy simulation results as a typical example to 

demonstrate the forecast uncertainty quantification process. Given the εk, we were able 

to generate multiple sets of f’ik series based on Equation 2 with which multiple sets of 

pseudo-forecast spill tracks could be generated, so that an oil spill forecast probability 

map can be obtained. In this demonstration, we applied 10 pseudo-forecasts to compose 

the forecast probability map for illustrating purpose (Figure 14). 

 

Fig. 14. Probability map based on 10 pseudo-forecasts. Spill source locates at southeast 

corner. 
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Figure 15 shows the ensemble of pseudo-forecasts OAB (projected on the light yellow 

polygon) and the associated hindcast simulation OC (projected on the green yellow 

polygon) on 3D Google Earth. In this case, both the hindcast and pseudo-forecast spill 

tracks land to the beach and the hindcast track is entirely outside the pseudo-forecasts, 

which is the same as the case in Figure 6b. Thus, Ul is reflected by the ratio of the red 

line from point A to C to the median curve length of the pseudo-forecasts; Ua is 

interpreted by the ration of the orange polygon to the light yellow polygon (OAB). Table 

2 shows the calculation results. 

 

Fig. 15. Forecast uncertainty quantification demonstration on Google Earth. The blue 

marker marks the oil spill starting position; the red markers marked at boundaries are 

used as geometric reference points; oil spill tracks are denoted by small black dots. 
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Table 2. Forecast uncertainty calculation results of 8/5/2014 - 8/7/2014 HyosPy 

simulation 

Uncertainty metrics Value 

Ut 0.252 

Ul 0.845 

Ua 3.157 

Us 0 

 

3.3 HFRA application 

The forecast reliability around [27.812 N, -97.309 W] is assessed by statistically 

analyze the EI curves based on the 66 sets of runs. Figure 16 shows examples of MDEI 

and DEI curves derived from the 8/5/2014 - 8/7/2014 HyosPy simulation. Generally, the 

more posterior the model initiates, the “later” the MDEI and DEI will appear. Because 

the pure hindcast model (the last model) is set as the benchmark, the more posterior the 

model initiates, the more hindcast data is able to be used which would result in 0 MDEI 

and DEI correspondingly. The MDEI and DEI tend to increase over the forecast period. 
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(a) MDEI plot 
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(b) DEI plot 

Fig. 16. MDEI and DEI curves based on 8/5/2014 - 8/7/2014 HyosPy simulation 

 

Figure 17 shows the EI curve of this simulation period. To determine the CEI, SSBI 

needs to be quantified. We choose the scale of Texas City Y oil spill accident as the 

typical case. The volume of oil spilled was O(1000m3), B = 1.25 × 1000 = 1250 meters 

of boom; L actually deployed was about 8800 meters from Texas City Dike to the 

central spill location (Patterson 2014). Thus, SSBI is evaluated as about 0.14 based on 

Equation 13. Thus we conclude that CEI is 2.24 based on Equation 14. It is therefore 

showing that the forecast range from 0 to about 33 hours is below the CEI, indicating 

the forecast quality within 33 hours’ simulation is relatively reliable; the rest of the 

modeling results (33hr to 48hr) are beyond the tolerance. 
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Fig. 17. EI curve based on 8/5/2014 - 8/7/2014 HyosPy simulation 

 

Figure 18 shows the forecast reliability assessment results based on the 66 sets of 

HyosPy runs, with which the reliability of a new forecast can be judged according to 

any prediction ranges. For example, a 12-hr forecast can be trusted in 100% confidence; 

while the η of a 30-hr forecast is less than 50%. Naturally, these results are based on a 

model-model comparison (hindcast vs. forecast) and should not be taken as indicative of 

actual reliability that would be computed with use of drifter observations or actual oil 

spill observations. 



Uncertainty/reliability assessment in oil spill modeling 

 35 

 

Fig. 18. Overall forecast reliability assessment 

 

4. Conclusion 

This study developed new approaches – FUPM and HFRA to evaluate forecast 

uncertainty and reliability in operational oil spill modeling system. The FUPM 

combines new developed uncertainty metrics and Monte Carlo simulation to evaluate 

how uncertainty affects the range of forecasts. A forecast probability map (visually) 

associated with quantified uncertainty metrics (numerically) can be generated by the 

FUPM method. The HFRA provides a new way to integrate reliability assessment 

directly into of oil spill forecasts. The method can be used to evaluate how far in the 

future a forecast can be relied upon with confidence, and how rapidly the prediction 
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quality will likely degrade over time. These new developed approaches can be used to 

answer the following questions: 

(1) How accurate is an oil spill prediction based on forecast data? 

(2) At what prediction range (i.e. forecast period) can oil spill forecasts be trusted in 

certain confidence intervals (e.g. 30%, 60%, and 90%)? 

The demonstration was conducted by a case study in Corpus Christi Bay with an 

imaginary oil spill at the shipping channel. The Monte Carlo simulation was applied to 

evaluate hindcast-forecast series errors, with which pseudo-forecast series were 

generated with a random number generator based on specific error distribution. Multiple 

set of pseudo-forecast simulations were therefore able to be produced to develop a 

forecast probability map. Given the associated hindcast simulation, the forecast 

uncertainties in terms of Ut, Ul, Ua, and Us were calculated based on four different 

scenarios. The HyosPy was implemented to provide multiple series of hindcast and 

forecast for forecast reliability assessment. The HyosPy was continuously running 

during 7/26/2014 to 4/11/2015 providing data for 66 different forecast periods. The EI 

mechanism was used to evaluate forecast error within one forecast period. The 66 

forecast error curves finally provided forecast reliability confidences of any prediction 

ranges within 48hr near [27.812 N, -97.309 W]. 

The initial motivation and application of this study is developing new methods to 

quantitatively evaluating modeling uncertainty and assessing forecast reliability in 

numerical oil spill modeling system, however the newly developed methods are not 

limited only in oil spill modeling system. In fact, the uncertainty evaluation method 

provides insights of how explicit forecast error quantification works, which could be 

benefit for forecast quality assessment of other numerical simulation such as hurricane 
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forecast and flood forecast. Furthermore, the HyosPy-based forecast reliability method 

is also extendable to any other numerical simulations (e.g. quantitative finance, weather 

forecast) that depends on real-time data and is capable of parallel computing. 
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