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Abstract

As oil transport increasing in the Texas bays, greater risks of ship collisions will
become a challenge, yielding oil spill accidents as a consequence. To minimize the
ecological damage and optimize rapid response, emergency managers need to be
informed with how fast and where oil will spread as soon as possible after a spill. The
state-of-the-art operational oil spill forecast modeling system improves the oil spill
response into a new stage. However uncertainty due to predicted data inputs often elicits
compromise on the reliability of the forecast result, leading to misdirection in
contingency planning. Thus understanding the forecast uncertainty and reliability
become significant. In this paper, Monte Carlo simulation is implemented to provide
parameters to generate forecast probability maps. The oil spill forecast uncertainty is
thus quantified by comparing the forecast probability map and the associated hindcast
simulation. A HyosPy-based simple statistic model is developed to assess the reliability

of an oil spill forecast in term of belief degree. The technologies developed in this study
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create a prototype for uncertainty and reliability analysis in numerical oil spill forecast
modeling system, providing emergency managers to improve the capability of real time
operational oil spill response and impact assessment.

Keywords: Uncertainty quantification, forecast reliability, oil spill modeling, HyosPy,

Monte Carlo simulation, probability map
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1. Introduction

When an oil spill occurs at late night in heavily trafficked shipping channels,
operational oil spill forecast modeling system provides the spill transport predictions
needed for rapidly deploying emergency responses equipment, e.g. booms, dispersant,
or skimmer boats. As moving equipment around the margins of an estuary or bay can be
time consuming, information on the uncertainty of the forecast spill path could be
insightful in deciding whether equipment should be immediately committed or moved
to a central location (relative to possible spill paths) to await predictions with greater
confidence. Unfortunately, such data is not generally available from existing operational

oil spill modeling systems.

1.1 Uncertainty in oil spill modeling

The cause of oil spill forecast uncertainty ranges from the modeling system itself to
the forecast model inputs. At the system limit are the interdisciplinary sub-models
including chemistry, turbulence, hydrodynamics, meteorology, and hydrology -
providing a 2D or 3D oil spill forecast trajectory (You and Leyffer 2011; Zelenke et al.
2012; Mackay et al. 1980; Huang 1983; ASA 1997; Reed 2000). Although some
previous studies (e.g. Price et al. 2004; Elliott and Jones 2000; Reinaldo and Henry
1999) proved that numerical formulations would have influence on the performance of
oil spill modeling, the forecast uncertainty in this end has been reduced significantly as
the evolution of the state-of-the-art models and parallel computing power. At the
forecast inputs limit are weather and hydrodynamic forecast time series (e.g. wind and
tidal force) required by the oil spill modeling. Presently weather forecasts have qualified

predictive capabilities for periods up to 4 days, but it becomes more and more unstable
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as time progresses (Sebastiao and Soares 2007; Sebastiao and Soares 2006). The
forecast data derived from operational models, such as Texas coastal wind forecasts
from the National Centers for Environmental Prediction (NCEP) Eta model (NECP
2015), might have poorer predictive skills for an even shorter forecast period. Unlike
the uncertainty from the modeling system limit, the uncertainty from forecast data is
inevitable.

NOAA’s GNOME (General NOAA Operational Modeling Environment) oil spill
transport model developed its oil spill forecast uncertainty assessment package by
undertaking self-made assumptions, i.e. modelers should have to guess what the
uncertainties of inputs are. The key is to perturb different movers by slightly changing
the magnitude or the direction of winds and currents input vectors (Zelenke et al. 2012).
The Oil Spill Risk Analysis (OSRA) model estimates the oil spill forecast uncertainty
by generating an ensemble of oil spill trajectories over many years of hydrodynamic and
meteorological input fields. The forecast uncertainty is assessed by analyzing the
difference of the simulated spills under the assumption that the occurrence rates of the
spills and the inputs will probably like those that might happen in the future (Price et al.
2003). Drifter modeling along with statistical post-processing is also a practical
approach to estimate the forecast uncertainty in most recent studies (Sebastiao and
Soares 2006; Price et al. 2006). Many of these methods advocate a minimum regret
strategy to deliver the predicted data to the oil spill modeling system (Galt 1997; Galt
and Payton 1999). However, all of these methods do not provide explicit information of
what can go wrong and how much is it to go wrong, of which are relatively more

important issues in operational oil spill forecast modeling. Hence more elaborate
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analysis is required to quantify the oil spill forecast uncertainty so that oil spill

managers could have a general idea of the forecast quality.

1.2 Reliability of oil spill forecast

Uncertainty in forecast modeling is pervasive; however in most operational
engineering, economics, and nature science fields, numerical simulations based on
forecast data are the only sources for decision making before hindcast or observed data
is available, especially for issues that rapid response is critical. As to oil spill accidents,
the observed data is always rare when a spill occurs. The realization of forecast
uncertainty in operational oil spill modeling system draws concerns for oil spill
managers, who pay high attention to the reliability of the forecast results. Thus, facing
to the forecast results of an oil spill modeling, oil spill managers would always ask: how
likely is it to go wrong? Or how much can I trust it? This is another uncertainty issue
that pertains to the confidence or reliability of a numerical oil spill forecast.

Reliability is the most important forecast quality that measures the degree of the
likelihood that a forecast captures the actual event being predicted. Reliability
assessment generally involves ensemble forecast, because real physics can only provide
a single outcome for a particular forecast, which is impossible to form a probabilistic
representation of reliability (Tippett et al. 2014). There are many ways of quantifying
forecast reliability. Brown et al. 1997 assessed the reliability of the power distribution
system to momentary interruptions and storms by using Monte Carlo simulation.
Weisheimer and Palmer 2014 and Ho et al. 2013 analyzed the reliability of seasonal
climate forecasts based on reliability diagrams which are tools to visualize and quantify

the statistical reliability of a forecast system. Winkler et al. 2010 examined the
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reliability of power system during hurricanes via network topology. There are few
studies concentrating on the reliability of oil spill modeling (e.g. Abascal et al. 2010;
Wang and Zhou 2009), however, these studies aim at specific model or spill event,
which simply cannot be applied over a broader sense. A more general approach is
required for present operational oil spill forecast modeling where the state-of-the-art
numerical models and forecast data sources are changing all the time.

This paper defines several new terms to quantify forecast uncertainty in operational
oil spill modeling system. Monte Carlo simulation is applied to evaluate forecast errors
so that multiple pseudo-forecast series can be generated to form a time-evolution of
forecast probability map for uncertainty quantification. The Hydrodynamic and Oil Spill
Python (HyosPy) (Hou and Hodges 2014; Hou et al. 2015; Hodges et al. 2015) is

exploited to assess forecast reliability of oil spill predictions in a more general sense.

2. Methods
2.1 Forecast uncertainty probability map (FUPM)

Oil spill forecast uncertinty has two facets - temporal and spatial. Temporal
uncertainty originates from the arrival time discrepancy of the surface oil at a specific
location (e.g. Abascal et al. 2010); spatial uncertainty emerges from the potential
transport track of the spill (e.g. Nelson et al. 2015 for large scale oil spill spatial
uncertainty analysis; Sebastiao and Soares 2006 analyzed smaller cases in a coastal zone
via a oil spill model).

From an operational response perspective, the critical question within a bay or
estuary is when and where will the spill hit the shoreline? The hit time can be defined as

the time that a forecast predicts the spill to hit a particular stretch of beach and the hit
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location as the location of beaching. For a given forecast period (7), not all spills will

hit the shoreline, so it is also useful to consider a simply binary discriminator of

beaching/no beaching. The forecast uncertainty can be divided into four categories, that
we will quantify as metrics:

1. Hit time uncertainty — U; : the deviation of the transport time between the hindcast
and forecast when one or both of them are beaching.

2. Hit location uncertainty — U; : the deviation of possible or simulated-definite
landing positions between the hindcast and forecast when one or both of them are
beaching.

3. Transport area uncertainty — U, : the deviation of transport directions (represented
by area for ease of calculation) between the hindcast and forecast.

4. Transport speed uncertainty — Uy : the deviation of transport speed between the
hindcast and forecast.

Quantifying the above metrics requires assessing the difference between observations
and the ensemble of possible forecasts, i.e. a forecast probability map. These metrics
could be developed/used in three different ways: (1) as an a priori exercise with field
drifter data as observations to evaluate likely uncertainty in models; (2) as a operational
task during a spill, where the latest spill observations are used to rapidly assess evolving
uncertainty; or (3) as a model-model comparison where hindcast data driving the model
represents the observations, and a range of forecast data driving the model provides the
ensemble. The present work demonstrates the technique using the model-model
approach, as we do not have access to a data set of drifters or observed oil spill

evolution.
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The forecast probability map is composed of multiple possible forecasts in the same
simulation period. However, a single simulation period could have only one forecast,
hence pseudo-forecast need to be created. In this work, the pseudoforecast is developed

by identifying input forecast error (¢x) based on Monte Carlo simulation. Specifically,

1 N
= —E - —h,)? 1
& \/N Z (fu = M) (1)

where k denotes input class (i.e. wind, tide, river flow); fix is the input forecast time
series; hjx is the input hindcast time series; i = 1, 2, ...N; N is the number of records
within the input time series.

The probability density function of &, that is PDF(ex), is obtained by applying Monte
Carlo simulation on & based on multiple sets of input forecast/hindcast time series in
different 7. Thus, the pseudo-forecast input time series f’i for a given T is able to create
by adding back a random error generated based on PDF(gy) to the fix for each record:

S = [ trand[-1 or 1]xrand[PDF(€, )] (2)
where rand|[ ] is the random operator that produces random number accordingly. Figure
1 illustrates the mechanism of the pseudo-forecast time series generation. Assuming &
follows a normal distribution as the green curves indicated, the purple curve shows the
track of the original forecast time series fix, with which the pseudo-forecast time series
flic could be generated. The blue dotted lines represent the boundaries of 99.7%
confidence intervals (+ 3 standard deviations away from the fi) of all the original
forecast data points, that is, there is a 93% probability that the new generated pseudo-

forecast time series track is within the boundaries if N = 24.
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Fig. 1. Pseudo-forecast time series generation mechanism

The forecast probability map can be generated by running multiple models together
in the same 7 based on corresponding different sets of pseudo-forecast input time series.
Figure 2 shows a simple example of three pseudo-forecasts in the same 7. The area oab
is the representation of the ensemble of pseudo-forecasts. For illustrative purpose,

diffusion effects are not considered in this example.

10
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Shipping channel

Coastalline

Fig. 2. Forecast probability map example. Position o is the initial spill location. The

green, orange, and dark blue curves represent three different pseudo-forecasts.

2.2 Different Benching Scenarios

A forecast probability map consists of an approximation of ensemble of pseudo
forecasts. Given a forecast probability map and the associated hindcast simulation, the
oil spill forecast uncertainty can be quantified by evaluating the forecast uncertainty
metrics according to two major possible beaching conditions: (1) forecast of non-
beaching and (2) forecast beaching; which are accompanied by two possible
observations: (a) observation of non-beaching and (b) observation of beaching.
1. Forecast of non-beaching and observation of non-beaching

Under this condition, both the ensemble of pseudo-forecasts (oab) and the observed

track (oc) do not land at the beach within 7. There are four logical cases where this

11
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might occur: (1) oc is inside the range of oab but outside the ab boundary (Figure 3a), (2)
oc falls entirely within the range of oab (Figure 3b), (3) oc falls partially within the

range of oab but crosses over one (or more) of the lateral boundaries (Figure 3c), and (4)
oc does not go through any part of oab (Figure 3d). For all the four cases, U; and U, are

defined to be 0 as these uncertainties require either actual or predicted beaching. For the

cases in Figure 3a and Figure 3b, U, is defined as O since oc stays inside the bounds of
oab, i.e. there is no deviation of transport directions between the hindcast and forecasts;

for cases in Figure 3c and Figure 3d, U, is defined as:

A

U — _exceed

‘ Aoab

(3)

where Acxceea denotes the area that oc exceeds oab, that is area of gbc in Figure 3¢, and
area of obc in Figure 3d; A.ap 1s the area of oab.

For case (1), Figure 3a, U is defined as:

1

U - Dexceed
' Vmedian T

4)

where Viedian 18 the median speed of the pseudo-forecast spills within T Dexceed i the

distance of the outermost observation point to oab, that is c¢p in Figure 3a. For cases (2),

(3) and (4) Uy is defined as 0 because either the forecast speed is reasonable (Figure 3b),

or the uncertainty is dominated by U, (Figures 3c and d).

12
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(a) (b)

() (d)

Fig. 3. Forecast of non-beaching and observation of non-beaching scenario

2. Forecast of non-beaching and observation of beaching

In this situation, oab does not intersect the beach, while oc is observed to intersect the
beach within 7. Three possible cases may happen: (1) oc is bounded within oab (Figure
4a), (2) oc does not go through any part of oab (Figure 4b), (3) oc falls partially within
the range of oab but crosses over one (or more) of the lateral boundaries (Figure 4c). In

this setting, U, is declared for all cases as:

13
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S

where 7 is the observation track hit time.
U, is defined as 0 in case (1) because oc does not go beyond the range of the potential
landing boundary of the pseudo-forecasts de; for case (2) and (3), U, is defined as:

MIN(["ds, [ds)
- L

‘median

U,

(6)

where Lyedian 1S the median curve length of the pseudo-forecast tracks.

U. is defined as 0 in case (1) since oc is entirely inside the bounds of oab; for case (2)
and (3), U, is defined the same as cases in Figure 3¢ and Figure 3d based on Equation 3.
Uy is 0 in case (2) and (3); for case (1), Us has the same defination as the case in Figure

3a based on Equation 4.

(a) (b)

14
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(©

Fig. 4. Forecast of non-beaching and observation beaching scenario. d and e denote

potential landing boundary points for the ensemble of pseudo-forecasts.

3. Forecast beaching and observation of non-beaching

In this scenario, the observed oc does not intersect the beach but the predicted oab
does. Three possible cases may happen: (1) oc is entirely inside oab (Figure 5a), (2) oc
is entirely outside oab (Figure 5b), (3) oc falls partially within the range of oab but
crosses over one (or more) of the lateral boundaries (Figure 5c). For all cases within this

seneario, U, is defined as:

(7)
where tedian 1S the median hit time of the pseudo-forecast spills.

U, is defined as 0 in case (1); for case (2) and (3), U, is defined the same as cases in
Figure 3c and Figure 3d based on Equation 3. Since oc does not land the beach, U; and

Us are defined to be O for all cases.

15
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(a) (b)

(©)

Fig. 5. Forecast beaching and observation of non-beaching scenario

4. Forecast of beaching and observation of beaching

It might also happen that both of oc and oab intersect the beach within 7. In this
circumstance, three possible cases may happen: (1) oc is entirely bounded within oab
(Figure 6a), (2) oc is entirely outside oab (Figure 6b), (3) oc falls partially within the
bound of oab but crosses over one (or more) of the lateral boundaries (Figure 6¢). For

all cases, U,is defined as 0; U;is defined as:

16
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U - tmedian

' T
(8)
U.is set as 0 in case (1); for cases (2) and (3), UL is defined as:

MIN([ ds, ["ds)
- L

‘median

U,

©)
U, is defined as O in case (1); for case (2) and (3), U, is defined the same as cases in

Figure 3c and Figure 3d based on Equation 3.

(a) (b)

17
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(c)
Fig. 6. Forecast beaching and observation beaching scenario

2.3 Derivation of the HFRA method

The HyosPy Forecast Reliability Assessment (HFRA) is a posteriori method based on
the comparison of the hindcsat and prior forecast simulations. HFRA applies the
HyosPy system (Hou et al. 2015; Hodges et al. 2015; Hou and Hodges 2014) to provide
data for oil spill forecast reliability assessment in a statistical manner. Figure 7 shows
the mechanism of HyosPy simulation within a forecast period 7. The first model starts
at time 0, running in a forecast mode (i.e. using all forecast wind, tide and river inflow
data). The second model starts at ¢+ when ¢ hours of hindcast are available; the second
model starts from the same start time, so the model is in hindcast mode for the interval
[0,¢] hours and then forecast mode for [#,7] hours. The third model (started at time 2¢)
does not need to run the time interval from [0,f] as it would be identical to the second
model; a “hotstart” feature is used to use the results of the second model at the end of its
hindcast () as the starting point for the third model, which is in hindcast for the interval
[#, 2¢] and forecast from [2¢#,T]. This pattern is continued until the final run is entirely in
hindcast mode. In the present work, the complete hindcast simulation provides the
benchmark for comparing the reliability of the forecasts. The methods developed herein

could be applied with observed spill or drifter data for a better assessment of model

reliability.
Forecast period T (wall clock time) .

L 1 L 1 1

0 t 2t 3t B e e Sh sy _'""n't

| B | B | H ] B ] - 0 [

| . |
Y
Pure forecast mode Hindcast-forecast hybrid mode " Pure hindcast mode .
Benchmark
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Fig. 7. A single forecast period HyosPy simulation. Light yellow represents forecast
simulation. Red represents hindcast simulation. Green denotes the “hotstart” time, i.e.
the hindcast simulation which has already been computed by the prior model.

To measure the ensemble forecast uncertainty within a complete single HyosPy
simulation, an Error Index (EI) is designated based on the Minimum Regret strategy to
minimize the worst-case regret (Galt 1997; Galt and Payton 1999). Specifically, given
the last model run as benchmark, EI adds up all the likely error caused by different
forecasts at each time step. The likely error herein is represented by the Mean Distance
Error Index (MDEI) and the Dispersion Error Index (DEI) to measure the average
distance and dispersion area difference (respectively) for the modeled spill particles at
each time step between a test case and a control case. The MDEI and DEI for each time

step p =1, 2, 3...n are defined as

m
zq=1 €ra

MDEI =
P mS
(10)
AAP
DEI, =Y
S
(11)

where m is the number of oil particles for each time step; e, , denotes the distance of
corresponding particle g at time step p between two test cases; AA, is the particle

dispersion area difference at time step p between two test cases; S is the curve length of
the spill track in the control case. Figure 8 illustrates the quantification process of MDEI

and DEI based on a simple two-case simulation (a test case and a control case).

19
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Fig. 8. MDEI and DEI quantification schematic. Each black dot represents an oil spill
particle; red triangles denote central locations of particles at each time step; the orange
circles compose the control case; the purple circles compose the test case; the length of
the green dash line is S; the length of the blue dash line is the mean distance for the
modeled spill particles at each time step between the test case and the control case, i.e.

MDEI,xS;; the area of yellow portion is AA .

Such that
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M-1
— 2 2
El, =Y \[MDEI’ +DEI’,

=
(12)
where j = 1,2,3, ...M — 1; M is the number of models within 7.

The oil spill forecast reliability is calculated based on the Critical Error Index (CEI)
with multiple sets of EI as statistic inputs. CEI is set as the tolerance, i.e. upper limit of
allowable error of a reliable forecast. Because EI is the accumulation of n — 1 models’
error metrics, CEI is defined with the same scale of EI based on the n — 1 cumulative of
the Spill Scale Benchmark Index (SSBI) which is derived from the boom containment
lengths of a typical accident. The SSBI is defined as

SSBI = B
L

(13)
where B denotes the theoretical length of boom required to contain free floating oil and
L is the length of boom that were actually deployed. More specifically, B = 1.25H,
where H is the amount of oil spill in m* (PERSGA/UNEP 2003).

Such that

CEI =(n—1)xSSBI (14)

With the idea that EI below CEI is within the tolerance, the forecast reliability # is

designed as:

N d
- under 15
v 15)

total

where Nunaer denotes the number of EI curves that remain under CEI; N is the total

number of EI curves.

21
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As a simple example, Figure 9 shows the forecast reliability analysis process with 3
different EI curves. Before T, all of the three curves are under CEI, thus the # is 100%
during O to T1; during T to T>, EI; has gone beyond CEI, hence, the 5 decreases to 67%
(2/3); during T> to T3, only EI remains under CEI, thus, the # reduces to 33% (1/3);

after 73, none of the curves are remaining under CEI, so that the # is 0%.

)

El El,
El,

El,
CEl}---=----- T
1

|

|

|

|

|

|

D LE. l . § T 4L T (hour)

-

n=100% nN=67% n=33% n=0%

Fig. 9. Forecast reliability example

3. Case study
3.1 HyosPy setup

As discussed in prior section, a single instance of HyosPy running provides multiple
forecasts and hindcasts within forecast period 7. A series of continuous HyosPy
simulations would yield statistic sample for EI evaluation in HFRA, and Monte Carlo
simulations to generate pseudo-forecast series for forecast uncertainty analysis.

In this study, a 48-hr HyosPy simulation with 17 individual model runs at a 3-hr

interval (i.e. the first model use complete forecast data; the last one use complete

22
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hindcast data) is used for demonstration (Table 1). This demonstration uses the SELFE -
GNOME system, which was previously integrated into HyosPy (Hou et al. 2015; Hou

and Hodges 2014).

Table 1. Sequenced model operations

Model # Start time Hindcast hour Forecast hour
1 0:00 0 hour 48 hours
2 3:00 3 hours 45 hours
3 6:00 6 hours 42 hours
17 (+2d) 0:00 48 hours 0 hour

The study region is the Corpus Christi Bay portion of the Texas coastal bend region,
which is simulated in the Texas General Land Office - Texas Water Development Board
(TGLO-TWDB) operational oil spill system. Corpus Christi Bay (Figure 10) is a
shallow (3m average depth) embayment that is bisected by a shipping channel dredged
to 15m depth serving the Port of Corpus Christi. The bay is microtidal with typical daily
excursions of O(0.5m); however, barotropic tides associated with weather system can
cause additional displacements over several days. Wind-driven flows in the bay are
dominated by a southerly sea breeze in the afternoon during summer months, but the

pattern is periodically disrupted by weather systems with northerly winds (Ward 1997)

23
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Fig. 10. Corpus Christi Bay

The model grid, Figure 11, was designed by TWDB as part of their modeling
program. The computational domain extends from Aransas Bay in the north to just
below Baffin Bay in the south, which includes all of Corpus Christi Bay and its
neighbors Nueces Bay and Oso Bay. A small offshore portion of the Gulf of Mexico is
included for enforcing tidal boundary conditions. To damp wave reflections that would
occur if river inflows were enforced directly at the river mouths, large dummy domains
(rectangular areas in Figure 11a) are included for each river. Figure 11b shows the
portion of the model grid for Corpus Christi Bay discretized by triangular elements in
the horizontal direction. The entire model grid contains 23286 nodes (vertex of

triangular element) and 41866 elements. The hydrodynamic model time step is set as

24
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180 seconds; the oil spill transport model time step is 900 seconds. Using such setup a
48-hr hydrodynamic simulation takes about 20 minutes of parallel running with 2 logic
processors based on MPI protocol on a 24-processor 64 GB-RAM Linux workstation.

The corresponding oil spill simulation takes less than 10 seconds.

Aransas Bay

Nueces Bay

Baffin Bay

(a)

25
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Fig. 11. SELFE horizontal model grid for Corpus Christi bay

Two major sources of forecast model inputs are taken into consideration — wind and tide.
Wind forecast are derived from the NAM Model of the NCEP (NECP 2015). The
Oceanography Department of Texas A&M University (TAMU) configure the NAM outputs and
provide the TWDB with wind hindcast/forecast data from a TAMU server which contains wind
data for 241 sites (Figure 12). These data could be used to develop a spatially-varying wind
field for the hydrodynamic model; however for the present demonstration, data from a single
site (Corpus Christi Bay site 051) are used for a spatially-uniform wind field over the study
area. The TAMU server provides wind hindcasts for two months and 4-day wind forecasts on a
3-hour update cycle. Tidal data are obtained from the Texas Coastal Ocean Observation
Network (TCOON). This network includes a system of tidal gages along the Texas coast with

rapid data availability online. Water level elevations are typically available on six minute
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intervals with a real-time lag on the order of 10 minutes. The adjusted harmonic tidal elevation

forecast of gage at Bob Hall Pier is used as the offshore water surface elevation to drive the

hydrodynamic model (TCOON 2015).

Fig. 12. Distribution of wind data locations

3.2 Forecast uncertainty probability map implementation

The 17-model HyosPy simulation was started on 7/26/2014 and continuously run for
a sequence of 2-day forecast simulation run for 2-day forecast periods until 4/11/2015.
Because data servers were intermittently down during this time, a total of 66 complete
simulation sets out of 128 possible were created. For this investigation, an imaginary oil
spill location is selected close to the shipping channel at [27.812 N, -97.309 W] (or

UTM 666580m E, 3077520m N, zone 14).
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The 66 runs provide forecast/hindcast data series for the input forecast error & (see
Equation 1) assessment based on Monte Carlo simulation. Figure 13 shows the
modeling results of east-west wind forecast error &yinax (Figure 13a), northsouth wind
forecast error ewinay (Figure 13b), and tide elevation forecast error €e.r (Figure 13c). It
can be seen that &yind» and &winay follow a normal distribution approximately; while a

student-T distribution is a better fit for e since it has a fatter tail, i.e. more extreme

events..
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(c) Distribution of &y
Fig. 13. Monte Carlo simulation for &. The red dash line is the “best fit” curve (PDF

curve); the yellow line demonstrates the “best value” (mode of the PDF).

We chose the 8/5/2014 - 8/7/2014 HyosPy simulation results as a typical example to
demonstrate the forecast uncertainty quantification process. Given the &, we were able
to generate multiple sets of f’i series based on Equation 2 with which multiple sets of
pseudo-forecast spill tracks could be generated, so that an oil spill forecast probability
map can be obtained. In this demonstration, we applied 10 pseudo-forecasts to compose

the forecast probability map for illustrating purpose (Figure 14).

Lat ., 781e1 Particle count
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Fig. 14. Probability map based on 10 pseudo-forecasts. Spill source locates at southeast

corner.
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Figure 15 shows the ensemble of pseudo-forecasts OAB (projected on the light yellow
polygon) and the associated hindcast simulation OC (projected on the green yellow
polygon) on 3D Google Earth. In this case, both the hindcast and pseudo-forecast spill
tracks land to the beach and the hindcast track is entirely outside the pseudo-forecasts,
which is the same as the case in Figure 6b. Thus, U, is reflected by the ratio of the red
line from point A to C to the median curve length of the pseudo-forecasts; U, is
interpreted by the ration of the orange polygon to the light yellow polygon (OAB). Table

2 shows the calculation results.

Pseudo-forecast
tracks

1

Hindcast track

S Christi
g

Fig. 15. Forecast uncertainty quantification demonstration on Google Earth. The blue
marker marks the oil spill starting position; the red markers marked at boundaries are

used as geometric reference points; oil spill tracks are denoted by small black dots.
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Table 2. Forecast uncertainty calculation results of 8/5/2014 - 8/7/2014 HyosPy

simulation
Uncertainty metrics Value
U; 0.252
U 0.845
Ua 3.157
Us 0

3.3 HFRA application

The forecast reliability around [27.812 N, -97.309 W] is assessed by statistically
analyze the EI curves based on the 66 sets of runs. Figure 16 shows examples of MDEI
and DEI curves derived from the 8/5/2014 - 8/7/2014 HyosPy simulation. Generally, the
more posterior the model initiates, the “later” the MDEI and DEI will appear. Because
the pure hindcast model (the last model) is set as the benchmark, the more posterior the
model initiates, the more hindcast data is able to be used which would result in 0 MDEI

and DEI correspondingly. The MDEI and DEI tend to increase over the forecast period.
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DEI

Forecast period T (hour)

(b) DEI plot

Fig. 16. MDEI and DEI curves based on 8/5/2014 - 8/7/2014 HyosPy simulation

Figure 17 shows the EI curve of this simulation period. To determine the CEI, SSBI
needs to be quantified. We choose the scale of Texas City Y oil spill accident as the
typical case. The volume of oil spilled was O(1000m:%), B = 1.25 x 1000 = 1250 meters
of boom; L actually deployed was about 8800 meters from Texas City Dike to the
central spill location (Patterson 2014). Thus, SSBI is evaluated as about 0.14 based on
Equation 13. Thus we conclude that CEI is 2.24 based on Equation 14. It is therefore
showing that the forecast range from 0 to about 33 hours is below the CEI, indicating
the forecast quality within 33 hours’ simulation is relatively reliable; the rest of the

modeling results (334r to 48hr) are beyond the tolerance.
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Fig. 17. EI curve based on 8/5/2014 - 8/7/2014 HyosPy simulation

Figure 18 shows the forecast reliability assessment results based on the 66 sets of
HyosPy runs, with which the reliability of a new forecast can be judged according to
any prediction ranges. For example, a 12-hr forecast can be trusted in 100% confidence;
while the # of a 30-hr forecast is less than 50%. Naturally, these results are based on a
model-model comparison (hindcast vs. forecast) and should not be taken as indicative of
actual reliability that would be computed with use of drifter observations or actual oil

spill observations.
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Fig. 18. Overall forecast reliability assessment

4. Conclusion

This study developed new approaches — FUPM and HFRA to evaluate forecast
uncertainty and reliability in operational oil spill modeling system. The FUPM
combines new developed uncertainty metrics and Monte Carlo simulation to evaluate
how uncertainty affects the range of forecasts. A forecast probability map (visually)
associated with quantified uncertainty metrics (numerically) can be generated by the
FUPM method. The HFRA provides a new way to integrate reliability assessment
directly into of oil spill forecasts. The method can be used to evaluate how far in the

future a forecast can be relied upon with confidence, and how rapidly the prediction
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quality will likely degrade over time. These new developed approaches can be used to

answer the following questions:

(1) How accurate is an oil spill prediction based on forecast data?

(2) At what prediction range (i.e. forecast period) can oil spill forecasts be trusted in
certain confidence intervals (e.g. 30%, 60%, and 90%)?

The demonstration was conducted by a case study in Corpus Christi Bay with an
imaginary oil spill at the shipping channel. The Monte Carlo simulation was applied to
evaluate hindcast-forecast series errors, with which pseudo-forecast series were
generated with a random number generator based on specific error distribution. Multiple
set of pseudo-forecast simulations were therefore able to be produced to develop a
forecast probability map. Given the associated hindcast simulation, the forecast
uncertainties in terms of U;, U;, U, and Us were calculated based on four different
scenarios. The HyosPy was implemented to provide multiple series of hindcast and
forecast for forecast reliability assessment. The HyosPy was continuously running
during 7/26/2014 to 4/11/2015 providing data for 66 different forecast periods. The EI
mechanism was used to evaluate forecast error within one forecast period. The 66
forecast error curves finally provided forecast reliability confidences of any prediction
ranges within 48hr near [27.812 N, -97.309 W].

The initial motivation and application of this study is developing new methods to
quantitatively evaluating modeling uncertainty and assessing forecast reliability in
numerical oil spill modeling system, however the newly developed methods are not
limited only in oil spill modeling system. In fact, the uncertainty evaluation method
provides insights of how explicit forecast error quantification works, which could be

benefit for forecast quality assessment of other numerical simulation such as hurricane
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forecast and flood forecast. Furthermore, the HyosPy-based forecast reliability method
is also extendable to any other numerical simulations (e.g. quantitative finance, weather

forecast) that depends on real-time data and is capable of parallel computing.
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