Creating a More Realistic Idealized Supercell Thunderstorm Evolution via Incorporation of Base-State Environmental Variability
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Creating a More Realistic Idealized Supercell Thunderstorm Evolution via Incorporation of Base-State Environmental Variability

Filetype[PDF-4.29 MB]



Details:

  • Journal Title:
    Monthly Weather Review
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Convective environments are known to be heterogeneous in both time and space, yet idealized models use fixed base-state environments to simulate storm evolution. Recently, the base-state substitution (BSS) technique was devised to account for environmental variability in a controlled manner while maintaining horizontal homogeneity; BSS involves updating the background environment to reflect a new storm-relative proximity sounding at a prescribed time interval. The study herein sought to assess the ability of BSS to more realistically represent the structure and evolution of an observed supercell thunderstorm in comparison to simulations with fixed base-state environments. An extended dual-Doppler dataset of an intensifying supercell thunderstorm in a varying inflow environment was compared to idealized simulations of the same storm; simulations included those with fixed background environments, as well as a BSS simulation that incorporated environmental variability continuously via tendencies to the base-state variables based on changes in a series of observed soundings. While the simulated supercells were generally more intense than what was measured in the observations, broad trends in reflectivity, vertical velocity, and vertical vorticity were more similar between the observed and BSS-simulated supercell; with a fixed environment, the supercell either shrunk in size and weakened over time, or grew upscale into a larger convective system. Quantitative comparisons examining distributions, areas, and volumes of vertical velocity and vorticity further confirm these differences. Overall, BSS provides a more realistic result, supporting the idea that a series of proximity soundings can sufficiently represent the effects of environmental variability, enhancing accuracy over fixed environments.
  • Keywords:
  • Source:
    Monthly Weather Review, 147(11), 4177-4198
  • DOI:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1