i
Assessing the Skill of Updated Precipitation-Type Diagnostics for the Rapid Refresh with mPING
-
2017
-
Source: Weather and Forecasting, 32(2), 725-732
Details:
-
Journal Title:Weather and Forecasting
-
Personal Author:
-
NOAA Program & Office:
-
Description:Previous work has shown that the Rapid Refresh (RAP) model severely underrepresents ice pellets in its grid, with a skill near zero and a very low bias. An ice pellet diagnostic upgrade was devised at the Earth System Research Laboratory (ESRL) to resolve this issue. Parallel runs of the experimental ESRL-RAP with the fix and the operational NCEP-RAP without the fix provide an opportunity to assess whether this upgrade has improved the overall performance and the performance of the individual precipitation types of the ESRL-RAP. Verification was conducted using the mobile Phenomena Identification Near the Ground (mPING) project. The overall Gerrity skill score (GSS) for the ESRL-RAP was improved relative to the NCEP-RAP at a 3-h lead time but degraded with increasing lead time; the difference is significant at p < 0.05. Whether this difference is practically significant for users is unknown. Some improvement was found in the bias and skill scores of ice pellets and snow in the ESRL-RAP, although the model continues to underrepresent ice pellets, while rain and freezing rain were generally the same or slightly worse with the fix. The ESRL-RAP was also found to depict a more realistic spatial distribution of precipitation types in transition zones involving ice pellets and freezing rain.
-
Keywords:
-
Source:Weather and Forecasting, 32(2), 725-732
-
DOI:
-
Document Type:
-
Funding:
-
Rights Information:Other
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: