Time-series metabarcoding analysis of zooplankton diversity of the NW Atlantic continental shelf
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Time-series metabarcoding analysis of zooplankton diversity of the NW Atlantic continental shelf

Filetype[PDF-1.92 MB]



Details:

  • Journal Title:
    ICES Journal of Marine Science
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Biodiversity of zooplankton is central to the functioning of ocean ecosystems, yet morphological taxonomic analysis requires teams of experts and detailed examination of many samples. Metabarcoding (DNA sequencing of short amplified regions of one or a few genes from environmental samples) is a powerful tool for analysis of the composition and diversity of natural communities. The 18S rRNA V9 hypervariable region was sequenced for 26 zooplankton samples collected from the Gulf of Maine, Georges Bank, and Mid-Atlantic Bight during ecosystem monitoring surveys by the U.S. Northeast Fisheries Science Center during 2002–2012. A total of 7 648 033 sequences and 22 072 operational taxonomic units (OTUs) were identified and classified into 28 taxonomic groups of plankton. Comparative analysis of molecular (V9 sequence numbers) and morphological (abundance counts) focused on seven taxonomic groups and revealed similar patterns of variation among years and regions. Sequence numbers and abundance counts showed positive correlation for all groups, with significant correlations (p < 0.05) for Calanoida, Gastropoda, and Chaetognatha. Shannon diversity index values calculated using sequence numbers and abundance counts showed highly significant correlation (r = 0.625; p < 0.001) across all regions during 2002–2012. This study demonstrates the potential of metabarcoding for time-series analysis of zooplankton biodiversity, ocean ecosystem assessment, and fisheries management.
  • Keywords:
  • Source:
    ICES Journal of Marine Science (2019), 76(4), 1162–1176
  • DOI:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Rights Statement:
    The NOAA IR provides access to this content under the authority of the government's retained license to distribute publications and data resulting from federal funding. While users may legally access this content, the copyright owners retain rights that govern the reproduction, redistribution, and re-use of this work. The user is solely responsible for complying with applicable copyright law.
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at

Version 3.27.1