U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Multi-channel Imager Algorithm (MIA): A novel cloud-top phase classification algorithm



Details

  • Journal Title:
    Atmospheric Research
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The current Geostationary Operational Environmental Satellites (GOES-16 and 17) cloud-top phase classification algorithm is based primarily on empirical thresholds at multiple wavelengths that have varying absorption capabilities for water and ice. The performance of current GOES-16 cloud-top phase product largely depends on the accuracy of the selection of reflectance ratios. This study aims at presenting a novel cloud-top phase classification algorithm (the Multi-channel Imager Algorithm, MIA) that provides a more judicious selection of relationships between channels using a supervised K-mean clustering method on multi-channel Red-Green-Blue images. The K-mean clustering method works analogously to how human eyes separate different colors in a microphysical color rendering set of satellite images, which differentiates water, ice and unclassified thin clouds. For water phase, cloud-top temperature information is used to further distinguish supercooled water. To evaluate the performance of the MIA, an extensive comparison with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), Moderate Resolution Imaging Spectroradiometer, and current GOES-16 cloud-top phase products is conducted, using CALIOP as the benchmark. Compared to the current GOES-16 cloud-top phase product, MIA demonstrates a substantial improvement in phase classification, where hit rate increases from 69% to 76% over the Continental United States and 58% to 66% over the full disk domain.
  • Keywords:
  • Source:
    Atmospheric Research, 261
  • DOI:
  • Document Type:
  • Funding:
  • Place as Subject:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Submitted
  • Main Document Checksum:
    urn:sha-512:7b4e73359076f8e1f18654bde0c5c74ff3b8d9c780525e26c29672691d6063672a23a38d584ae6d86ff2e2904f46a94188784be17626db810fbf1b14463f196c
  • Download URL:
  • File Type:
    Filetype[PDF - 1010.81 KB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.