i
Multi-channel Imager Algorithm (MIA): A novel cloud-top phase classification algorithm
-
2021
-
-
Source: Atmospheric Research, 261
Details:
-
Journal Title:Atmospheric Research
-
Personal Author:
-
NOAA Program & Office:
-
Description:The current Geostationary Operational Environmental Satellites (GOES-16 and 17) cloud-top phase classification algorithm is based primarily on empirical thresholds at multiple wavelengths that have varying absorption capabilities for water and ice. The performance of current GOES-16 cloud-top phase product largely depends on the accuracy of the selection of reflectance ratios. This study aims at presenting a novel cloud-top phase classification algorithm (the Multi-channel Imager Algorithm, MIA) that provides a more judicious selection of relationships between channels using a supervised K-mean clustering method on multi-channel Red-Green-Blue images. The K-mean clustering method works analogously to how human eyes separate different colors in a microphysical color rendering set of satellite images, which differentiates water, ice and unclassified thin clouds. For water phase, cloud-top temperature information is used to further distinguish supercooled water. To evaluate the performance of the MIA, an extensive comparison with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), Moderate Resolution Imaging Spectroradiometer, and current GOES-16 cloud-top phase products is conducted, using CALIOP as the benchmark. Compared to the current GOES-16 cloud-top phase product, MIA demonstrates a substantial improvement in phase classification, where hit rate increases from 69% to 76% over the Continental United States and 58% to 66% over the full disk domain.
-
Keywords:
-
Source:Atmospheric Research, 261
-
DOI:
-
Document Type:
-
Funding:
-
Place as Subject:
-
Rights Information:Accepted Manuscript
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: