Eastward-Propagating Disturbances in the Tropical Pacific
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Eastward-Propagating Disturbances in the Tropical Pacific

Filetype[PDF-5.20 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Monthly Weather Review
  • Description:
    Within the tropical Pacific intertropical convergence zone (ITCZ), organized cloud systems that evolve over synoptic time scales frequently propagate eastward and contribute significantly to the clouds and precipitation in that region. This study analyzes eastward-propagating disturbances (EPDs) in the tropical Pacific during boreal winter (DJF) and spring (MAM) and their connection to Northern Hemisphere (NH) extratropical Rossby wave activity using cloud and precipitation fields from satellite and dynamical fields from reanalysis. During DJF, EPDs are located north of the ITCZ (around 15°N), propagate eastward at 10 m s−1 within the central Pacific, and exhibit high cloudiness associated with upper-level divergence on the east side of NH Rossby waves propagating into the tropics. During MAM, EPDs initiate in the west Pacific and propagate along the ITCZ axis (around 7°N) into the east Pacific at 15 m s−1 where NH Rossby waves induce upper-level divergence, enhancing their convective activity. The MAM EPDs are decidedly associated with Kelvin wave characteristics, while the DJF EPDs are not. The shallow meridional circulation (SMC) in the east Pacific is also studied in the context of EPDs. During DJF, EPDs do not impact the SMC, but the deep meridional circulation in the northern part of the ITCZ strengthens. During MAM, the shallow convection ahead of the EPDs enhances the SMC in the southern part of the ITCZ. These results distinguish between two types of EPDs during DJF and MAM that have different physical characteristics, forcing mechanisms, and regional impacts.
  • Source:
    Monthly Weather Review, 148(9), 3713-3728.
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

Related Documents

You May Also Like